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1. Introduction

Research in the economics of education often finds that accountability policies have a larger
effect on math test scores than on English language arts (ELA) scores. For example, Dee
and Jacob (2011) show that No Child Left Behind increased 4th grade math scores by 0.23
standard deviations, while ELA scores increased by only 0.06 SDs. Neal and Schanzenbach
(2010), Rockoff and Turner (2010), and Rouse et al. (2013) each find that state accountability
policies induced larger gains in math than in ELA.

This pattern also arises in other literatures where standardized testing and accountability
are important. Abdulkadiroğlu et al. (2011) show that admission to Boston charter schools
raised students’ achievement by 0.42 SDs in math, and 0.25 SDs in ELA. Chetty et al. (2014a)
find that the standard deviation of teacher value added in a large urban school district is
roughly 50 percent larger in math than in ELA.

A common hypothesis for this pattern is that most math learning takes place at school,
while students primarily learn English and reading at home. But Jackson et al. (2014)
acknowledge: “There is no clear explanation for this fact.”

This paper shows that this pattern can partly be explained by differences between math
and ELA in the design of state accountability exams, which created stronger incentives for
test prep in math. We collected data from the technical reports of grade 3–8 standardized
exams in six states that are the setting for most research on education accountability in the
United States. We show that, relative to ELA exams, math exams usually measured ability
more precisely for students on the margin of achieving proficiency. This gave educators an
incentive to spend more time preparing students for math tests than for ELA tests, consistent
with the pattern of estimates in literatures where accountability matters.

We begin the paper with a brief review of math and ELA estimates in three research areas:
1) accountability policies (Figlio and Loeb, 2011); 2) admission to charter schools (Epple
et al., 2016); and 3) variation in teacher value added (Koedel et al., 2015). Accountability
through standardized testing is important in each of these literatures, as it impacts funding,
the renewal of school charters, and teacher employment. We show that in each research area,
there is a remarkably consistent pattern of larger effects in math than in ELA.

Next, we develop a framework that shows how a teacher’s incentives for test prep depend
on the structure of the accountability exam. Test prep increases students’ expected exam
performance, but requires costly effort. Our key assumptions are that teachers seek to
maximize the proficiency rate in their class (a central metric in many accountability systems),
and that they target instruction to marginally-proficient students (Neal and Schanzenbach,
2010). Under these assumptions, teachers exert more effort on test prep when there are
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more students on the margin of proficiency, and when the exam is a more precise measure
of ability for these marginal students.

We show that the design of the accountability exam affects these test prep incentives
in two ways. First, test designers choose a proficiency standard, which affects how many
students are near the proficiency margin. Exams with a “low bar” for achieving proficiency
will tend to have fewer marginal students. Second, the exam’s precision for the ability of
marginally-proficient students depends on the types of questions. Exams measure ability
more precisely when there are more questions at an appropriate difficulty level, and when
questions are more “discriminating” between higher- and lower-ability test takers.

Our empirical analysis shows how state accountability exams varied in these dimensions
during 2000–2008. Our data come from the technical reports of grade 3–8 math and ELA
exams in Florida, Illinois, Massachusetts, New York, North Carolina, and Texas, which are
the settings for most of the papers in our literature review. Each of these states implemented
an accountability policy in the 1990s (Dee and Jacob, 2011), and accountability expanded in
2006 with the adoption of No Child Left Behind. The technical reports contain information
on the structure of the accountability exams (e.g., the number of questions and their diffi-
culty) and the realized distribution of test scores. We simulate data for each test to estimate
the number of students near the proficiency margin, and the effect of an increase in these
students’ ability on their likelihood of achieving proficiency.

Our main finding is that test prep incentives were usually stronger in math than in ELA.
Several differences in exam structure explain this fact. Math exams typically contained more
questions at an appropriate difficulty level for marginally-proficient students, which made
them a more precise measure of ability in this region. Math exams often had more questions
overall, and these questions were more discriminating on average. Lastly, math exams often
had lower proficiency rates than ELA exams, which meant that there were more students
near the proficiency margin in the average classroom.

We show that variation in test prep incentives can explain a significant portion (but not
all) of the variation between math and ELA effects in the literature. The math estimates
in our literature review are roughly 50 percent larger than the ELA estimates on average,
and the mean difference in test prep incentives in our preferred metric is 22 percent. We
link the math/ELA ratio of point estimates in each paper to the math/ELA ratio of test
prep incentives in the exams that overlap with the authors’ samples. The two variables have
a strong positive correlation: a 10 percent increase in the ratio of test prep incentives is
associated with an eight percent increase in the ratio of literature estimates. This suggests
that test prep is one reason why math estimates tend to be larger in the literature, although
the magnitudes of our findings suggest that other factors play a role in this pattern.
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The patterns we identify do not hold in every exam, but we think that they reflect general
differences between math and ELA testing that are salient to teachers. It is often said that
math requires cumulative knowledge, and most math questions can be described briefly. This
may make it easier for test designers to write exams that precisely measure ability on the
proficiency margin, and likewise make it easier for educators to prepare students for exams.
We present evidence that exams in other U.S. states have a similar structure to those in our
main sample, suggesting that our findings reflect general differences between math and ELA
testing.

Our paper provides one explanation for the common finding that math scores are more
responsive to accountability pressures than ELA scores. There is limited research that tries
to explain this pattern. Many researchers hypothesize that it arises because school inputs
matter more for achievement in math than in ELA (Jacob, 2005; Jackson et al., 2014), and
our results do not rule out this possibility. Our findings are more closely related to Kane and
Staiger (2012)’s hypothesis that ELA exams are less sensitive to teacher effort; we provide
direct evidence on this claim and link it to incentives for test prep.1 Our literature review
focuses on papers that use data from the 1990s and 2000s, but the pattern of larger effects in
math also arises in more recent contexts where educators face accountability (Jackson, 2018;
Cohodes et al., 2021). By contrast, we show that math estimates tend to be slightly smaller
than ELA estimates in an older literature on class size (Glass and Smith, 1979; Krueger,
1999), in which many papers use data from years with low accountability.

We contribute to research on the incentive effects of accountability policies in education.
This work has shown how accountability affects the allocation of school resources (Jacob and
Levitt, 2003; Figlio and Winicki, 2005; Craig et al., 2013; Reback et al., 2014), teacher effort
(Taylor and Tyler, 2012; Aucejo et al., 2020), and the distribution of test scores (Reback,
2008; Springer, 2008; Hemelt, 2011; Macartney et al., 2021). This work often finds that
accountability pressures have a larger effect on scores in high-stakes exams than on low-stakes
exams (Jacob, 2005; Figlio and Rouse, 2006; Imberman and Lovenheim, 2015; Bergbauer
et al., 2018), suggesting that educators teach to the test (Holmstrom and Milgrom, 1991).
There is also a large body of education research that finds that accountability pressures
cause teachers to engage in test prep (Stecher and Mitchell, 1995; Koretz et al., 1996; Jones
et al., 1999; Pedulla et al., 2003; Jennings and Bearak, 2014).2

Our paper adds to this literature by showing how the effects of accountability policies
depend on the structure of the exams. For critics of standardized testing, our findings might

1 Our paper is also related to work that shows that the precision of test scores matters for the effectiveness
and evaluation of accountability policies (Kane et al., 2002; Kane and Staiger, 2002; Chay et al., 2005).
2 Other research in education discusses the implication of test prep for the evaluation of accountability
policies (e.g., Fuller et al., 2007; Ho, 2008).
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suggest that the pattern of larger math effects in the literature does not reflect larger gains
in generalizable math learning. This is consistent with Chetty et al. (2014b)’s finding that
future earnings are less related to teacher value added in math than in ELA. But since
our data only include scores on accountability exams, we do not take a stand on whether
test-prep learning is valuable outside of the exam.

Our broader takeaway is that researchers should be cognizant of how accountability pres-
sures and exam design can impact their findings (Jacob and Rothstein, 2016; Nielsen, 2019).
We conclude the paper with guidance for gauging how test prep incentives vary across exams.

The paper proceeds as follows. Section 2 presents a brief review of math and ELA estimates
in literatures where accountability matters. Section 3 develops our theoretical framework.
Section 4 describes our data, methods, and main results on the test prep incentives in math
and ELA exams. Section 5 examines the relationship between test prep incentives and
literature estimates in our sample. Section 6 concludes.

2. Literature estimates

Table 1 summarizes math and ELA estimates in three literatures where accountability
through standardized testing is important: A) accountability policies; B) admission to char-
ter schools; and C) teacher value added. To be systematic, we use a review paper on each
topic to define the set of studies for Table 1. We include only papers that present effects
on grade 3–8 test scores in both math and ELA. We also exclude papers with identification
strategies that are regarded as less credible by most researchers in the economics of educa-
tion (e.g., propensity score matching or student fixed effects). Column (A) lists the studies
that meet these criteria. Columns (B)–(E) show the location, exam years, and grades for
the sample in each paper. Columns (F)–(G) show the math and ELA estimates from the
authors’ preferred specification.3

Panel A includes papers on the effects of accountability policies cited in the review by
Figlio and Loeb (2011). This includes work on state- or district-level accountability systems
that existed prior to No Child Left Behind (NCLB), as well as national studies of the effects
of NCLB. In this panel, the estimates in columns (F)–(G) reflect the effects of an increase
in the stakes of an exam—either from the introduction of an accountability system or from
increased pressure due to a school’s poor prior performance.

Panel B shows papers on the effects of charter school attendance from the literature review
in Epple et al. (2016). The math and ELA effects all come from lottery-based identification
strategies, which compare the test scores of admission lottery winners and losers. Account-
ability is important for charter schools because they face more stringent requirements to
3 Most estimates are in effect size units (i.e., test scores are normalized to mean 0/SD 1), but the units differ
in a few papers. The math and ELA effects are always from the same specification and in the same units.
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operate than traditional public schools. For example, Massachusetts charter schools must
renew their charter every five years, and the process includes a review of proficiency rates
on state exams (Abdulkadiroğlu et al., 2011). Additionally, teacher pay at charter schools is
often directly tied to student exam performance (Dobbie and Fryer Jr, 2011).

Panel C includes papers in the review by Koedel et al. (2015) that estimate variation in
teacher value added. In this panel, the estimates in columns (F)–(G) represent the standard
deviation of the teacher value added distribution in math and ELA. The link between these
effects and accountability is weaker than in the other two literatures, but test prep is still
likely to play a role. Researchers can typically only estimate teacher value added in districts
where accountability systems exist to collect such data. Part of what distinguishes a good
teacher in this metric may be their effectiveness at preparing students for exams. Consistent
with this, Corcoran et al. (2011) find that teacher value added varies more on high-stakes
exams than on low-stakes exams, and Macartney et al. (2018) present evidence that teacher
effort responds to accountability incentives.

In each literature, there is a remarkably consistent pattern of larger effects on math scores
than on ELA scores. Column (H) shows that math effects are more than 50 percent larger
than ELA effects on average, and they are larger in magnitude in all but two of the papers
in our review. This pattern is most pronounced in the accountability papers, for which the
math effects are 75 percent larger than the ELA effects on average. The math/ELA ratio of
estimates also tends to be higher in grades 6–8 than in grades 3–5 (1.66 vs. 1.44). The rest
of our paper examines the role of test prep incentives in explaining this pattern.

3. Framework

This section presents a simple model of a teacher’s incentives for test prep and shows how
the structure of an accountability exam affects these incentives.

3.1. Optimal test prep. We consider a teacher with a class of students indexed by i, and
we let αi denote the ability of each student. We interpret αi as the level of student ability
that would arise in the absence of accountability pressures. Thus αi is determined by many
factors, including the student’s innate ability, their prior education, and the instruction
choices that the teacher would make in the absence of accountability.

If accountability is important, the teacher can further increase student ability by exerting
effort, e∗. This term can also represent the amount of extra class time devoted to test prep as
a result of accountability pressures. We assume that teacher effort increases student ability
through the following learning production function:

θi = αi + g(e∗)h(α∗ − αi).(1)
5



Effort is costly, which may reflect teacher morale or less time available for other material,
and has diminishing returns through the function g(·). The teacher must also choose a
target instruction level, α∗, that affects the amount of skill accumulation for each student.
We assume h(·) is a decreasing function of the absolute value of the difference between the
target level, α∗, and the student’s ability, αi, and it equals zero if |α∗−αi| is large. In other
words, students learn more when their own ability is close to the instruction level. Students
who find the test prep too easy or too hard may not benefit from this preparation.4

Together, student ability and any added skill from test prep determine the student’s skill
at the time they sit for the exam, θi.5 The term θi reflects the student’s potential to perform
well on the exam, and it is important to note that this skill may or may not be useful outside
of the exam (Holmstrom and Milgrom, 1991). The term “test prep” often has a negative
connotation, but our paper does not take a stand on the value of test prep since we do not
use data on outcomes other than exam scores. This caveat also applies to most of the papers
in Table 1, which use test scores as the main outcome variable.6

The exam consists of multiple questions indexed by q = 1, . . . , Q, and the student’s post-
prep skill affects their exam performance through the equation

pq(θi) ≡ Pr[uiq = 1|θi].(2)

uiq is an indicator equal to one if student i correctly answers question q. The term pq(θi)
defines the probability of a correct answer to question q as a function of student skill, θi.

We consider test scores defined by whether or not a student meets a proficiency standard:

τ(Ri) = 1{Ri ≥ R}, where Ri =
Q∑
q=1

uiq.(3)

The student’s test score, τ(Ri), is a function of their raw score, Ri, which is the total number
of correct answers.7 There are many potential transformations of raw scores, including scale
scores (as often reported by states) and standardized scores (as often used by researchers).
We focus on an indicator for achieving proficiency, which occurs when the raw score, Ri,
4 Our specification of student learning (equation 1) is similar to that in Duflo et al. (2011), except the
authors also allow for the possibility of peer effects.
5 Throughout the paper we use the terms “ability” and “skill” interchangeably to refer to both αi and θi.
The term θi might more accurately be called “test skill.” But psychometricians often use “ability” or “skill”
to refer to the object of measurement in writing exams, and so we follow their language.
6 A notable exception is Chetty et al. (2014a), who examine the predictive power of teacher value added for
long-run earnings in a companion paper (Chetty et al., 2014b). The authors find that teacher value added
varies more in math than in ELA, but that future earnings are less related to math value added than to
ELA value added. This suggests that math value added may partly reflect test prep that is not beneficial
for future earnings, although there are other possible explanations for this pattern.
7 We define τ(Ri) as a function of Ri because most U.S. states score exams such that students with the
same raw scores receive the same scale scores. In a few states, scores are computed using the full vector of
exam responses, {uiq}Qq=1. See Appendix C.3 for further details on the scoring of exams.
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exceeds a minimum threshold deemed to be proficient, R. Proficiency levels are often the
most important consideration in accountability systems. For example, NCLB tied school
funding to growth in proficiency rates through its “adequate yearly progress” targets (Dee
and Jacob, 2011).

We assume the teacher chooses e∗ and α∗ to maximize the expected proficiency rate in
their class given costly effort. The teacher can only maximize expected proficiency because
some aspects of students’ performance are outside of their control (e.g., health on exam day).
We assume the choice of the target level, α∗, is costless.8

We briefly characterize the teacher’s optimal choice of α∗ and e∗ here; Appendix B.1 pro-
vides a full derivation. Intuitively, the teacher’s optimal instruction level, α∗, is centered
around students for whom additional skill is likely to make a difference in achieving profi-
ciency. This choice balances the expected proficiency gains from moving α∗ closer to the
ability levels of some students with the expected losses from moving it further from other
students’ abilities (see Appendix Equation B6). The optimal value of α∗ will typically be
near the ability level of marginally-proficient students, but this value varies with the ability
distribution in the class. This is analogous to the key insight in Neal and Schanzenbach
(2010).

Our main focus is on the optimal effort level, e∗, which we characterize in Proposition 1:

Proposition 1. The teacher’s optimal level of effort, e∗, is increasing in:

• The number of students on the margin of expected proficiency; and
• The derivative of expected proficiency with respect to ability, dE[τ(Ri)|θi]/dθi, for
marginally-proficient students.

Intuitively, teachers exert more effort when: 1) there are more students near the proficiency
margin; and 2) when skill accumulation for these students is more likely to be rewarded by
the exam in terms of achieving proficiency, i.e., when dE[τ(Ri)|θi]/dθi is larger. Put simply,
effort is increasing in the returns to effort—as defined by its impact on the class proficiency
rate (see Appendix Equation B7). 9

The next subsection shows that the structure of a standardized exam impacts both of
these factors.

3.2. Exam design. There are two main elements of exam design that affect the determi-
nants of teacher effort in Proposition 1. First, test designers set a proficiency standard,

8 The choice of α∗ may be costly if teachers must change their lesson plans; we abstract from such costs.
9 Macartney et al. (2018) show that teacher value added is positively related to the proportion of students
in the classroom who are on the proficiency margin. The first part of our Proposition 1 mirrors this result,
although we focus on how the proportion of marginal students varies with the exam structure.
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which affects how many students are likely to be near the proficiency margin. In our frame-
work, this standard corresponds to the choice of the raw score threshold, R. In practice, test
designers choose R based on the level of expected ability they deem to be proficient.10 This
choice determines where the proficiency margin falls in the distribution of ability. Exams
in which 50 percent of students are deemed proficient will tend to have more marginally-
proficient students than exams with a proficiency rate of 85 percent. A major criticism of
NCLB was that states could set their own proficiency standards, which led to wide variation
in proficiency rates (Reback et al., 2014).

Second, the derivative of expected proficiency, dE[τ(Ri)|θi]/dθi, depends on how informa-
tive the exam questions are for a given level of ability, θi. To write an exam, test designers
select topic areas and write questions to test concepts within each topic. These questions
are then placed onto a unidimensional scale of ability, often using Item Response Theory
(IRT). For example, the “three-factor” IRT model assumes that the probability of a correct
answer to question q as is a logistic function of θi:

pq(θi) = cq + 1− cq
1 + e−aq(θi−bq) .(4)

The parameter bq is referred to as the question’s difficulty because the probability of a
correct answer is decreasing in bq. Question difficulty is expressed in the same units as
student ability, θi, and the derivative of the probability of a correct answer, p′q(θi), is largest
for students whose ability matches the difficulty level, θi = bq. The parameter aq is known
as the question’s discrimination; higher values of aq imply that the question is better able to
discriminate between test takers with θi > bq and θi < bq. Lastly, the cq parameter defines
the question’s guessability; cq is equal to the probability of a correct answer as θi → −∞.11

The distribution of question parameters affects how precisely the exam measures ability
at any given level of θi, which affects the magnitude of dE[τ(Ri)|θi]/dθi. All else equal,
dE[τ(Ri)|θi]/dθi is larger for marginally-proficient students when:12

• The exam has many questions in which the difficulty, bq, is close to the level of
marginally-proficient ability;
• The questions near the proficiency margin are more discriminating (higher aq);
• The questions are less guessable (lower cq);
• The exam has more questions overall (higher Q).

10 Test designers often use the “bookmark method” to set the proficiency standard: the exam questions are
displayed in order of difficulty, and educators are asked to bookmark the page at which a minimally-proficient
student would stop providing correct answers.
11 Test designers try out potential exam questions by adding them as un-scored items on other tests, and
then use these responses to estimate the parameter values {aq, bq, cq}.
12 See Appendix B.2 for details on how these parameters affect dE[τ(Ri)|θi]/dθi near the proficiency margin.
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Our data in Section 4 includes both proficiency standards and IRT parameters, and we
show how these design elements affect test prep incentives.

3.3. Incentives in math and ELA. Below we show that math and ELA exams during
this period often varied in structure, and thus created different incentives for test prep.
Our framework does not explicitly model tradeoffs between subjects, but teachers would
optimally spend more time on subjects with higher returns to test prep. Elementary school
teachers face a direct tradeoff between math and ELA prep since they teach both subjects.
Even in middle school, where teachers often teach one subject, the strength of incentives
matters because test prep reduces time available for other material.

We make two assumptions in comparing incentives in math and ELA. First, our analysis
implicitly assumes that the effect of test prep on student ability (equation 1) is the same in
math and ELA. Many researchers hypothesize that school inputs matter more for learning
in math than in ELA (Jackson et al., 2014). Our analysis does not speak to this hypothesis,
and we believe that is it likely to play a role in the pattern of literature estimates. We
ask instead whether test prep incentives can contribute to this pattern even if one does not
assume differences in the production of math and ELA skills.

Second, we assume that teachers can observe the factors that affect test prep incentives
(Proposition 1). Educators do not perfectly know the exam structure ex ante, but experi-
enced teachers will know which students are likely to be near the proficiency margin. Further,
states typically provide practice tests to help teachers prepare students for questions that
are likely to appear on the exam. Research in the economics of education often finds that
teacher effort responds to accountability and evaluation incentives (e.g., Taylor and Tyler,
2012; Imberman and Lovenheim, 2015; Aucejo et al., 2020). There is also a large litera-
ture in education that shows how accountability alters teachers’ instruction choices (e.g.,
Koretz et al., 1996; Pedulla et al., 2003; Jennings and Bearak, 2014). Thus we would find it
surprising if most teachers were unaware of incentives created by the design of exams.

4. Data collection and analysis

This section describes our data, methods, and main findings on the incentives for test prep
in math and ELA exams.

4.1. Data and methods. We collected data from the technical reports of grade 3–8 math
and ELA exams in six U.S. states that are the setting for most of the papers in Table 1:
Florida, Illinois, Massachusetts, New York, North Carolina, and Texas. We obtained reports
from two years for each state: one year in 2000–2003 (pre-NCLB), and another in 2006–2008
(NCLB era). In each time period, we used the earliest year for which we could find a report
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with all the information necessary for our analysis. Appendix Table C1 shows our data
sources and the exam years for each state.

Our analysis relies on three types of data from these reports. First, we use information on
the questions that appeared on the exams in each subject and grade. Some reports provide
the IRT parameters {aq, bq, cq} for every exam question; others report only the distribution
of these parameters. Second, we use information on how raw scores (total correct answers)
map into scale scores. Third, the reports provide data on the realized distribution of scale
scores from the exam administration, and on the minimum score necessary for proficiency.

We use this data to simulate test scores for the population of students who took each
exam (defined by a state, year, grade, and subject). Our simulations for each exam proceed
as follows:

(1) Create i = 1, . . . , 1000 test takers at each ability level θ ∈ {−5,−4.9, . . . , 0, . . . , 4.9, 5},
where we begin with the prior that θi ∼ N(0, 1).

(2) Use the question parameter data to draw a random vector of exam responses, {ui1, . . . , uiQ},
based on each test taker’s ability, θi, and the IRT model (equation 4).13 Each uiq

indicates whether test taker i answered question q correctly.
(3) Compute each test taker’s raw score, Ri = ∑Q

i=1 uiq.
(4) Convert raw scores to scale scores using the scaling data.
(5) Update the distribution of ability, θi, to match the observed scale score distribution

in the population of students that took the exam.14

Appendix C provides details on our data and simulations. We also provide our simulation
codes as supplementary material for this paper.

From this simulated data we compute the key statistics that relate to Proposition 1: the
density of the ability distribution and the derivative of expected proficiency for marginally-
proficient students. Throughout our analysis, we define “marginally-proficient” as the level
of ability at which the likelihood of proficiency is 50 percent, and we denote this ability level
by θ. We also show statistics on the exam structure, which come directly from the technical
reports.

Our use of simulated data comes with several caveats. First, our simulated data is designed
to match the observed score distribution, which includes any impacts of real-world test prep.
This can affect our estimates of the density of the ability distribution at θ because test

13 When we do not have question-level data on the IRT parameters {aq, bq, cq}, we draw questions randomly
from a normal distribution with mean/variance equal to the values from the report.
14 The prior that θi ∼ N(0, 1) is the same assumption that test designers make in scoring exams. We then
update the density of θi so that the distribution of our simulated scale scores matches the distribution of
scale scores from the exam administration. See Appendix C.5 for details.
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prep can alter this distribution.15 Thus our results implicitly assume that real-world test
prep does not significantly alter the density of the ability distribution at θ. We think this
is a reasonable assumption since most of the literature estimates in Table 1 are modest in
magnitude. Second, our data contain additional measurement error from simulation. But
we use a large number of simulated test takers, so the magnitude of this error is small.
Appendix Table A6 shows that our main results do not change significantly when we re-run
our simulations.

4.2. Example. Figure 1 illustrates how exam design can affect test prep incentives using
New York’s 2006 8th grade math and ELA tests. Panel A plots the cumulative distribution
functions of question difficulty, bq, for the math (red circles) and ELA (black triangles)
exams.16 Each marker represents one exam question. Question difficulty is expressed in
units of individual ability, θi, which is scaled to be mean 0 and standard deviation 1 in the
reference population for each exam. The vertical lines denote the level of ability at which
the probability of achieving proficiency is 50 percent, θ. Marker sizes are proportional to the
question’s discrimination parameter, aq.

Three features of New York’s 8th grade math exam made it a more precise measure of
ability for marginally-proficient students than its ELA exam. First, the math exam featured
many questions in which the difficulty, bq, was close to proficiency margin, θ, whereas the
ELA exam had fewer such questions. Second, the math exam had more questions, Q, than
the ELA exam (68 vs. 39); this gave test takers more opportunity to demonstrate their
ability. Finally, the math questions were more discriminating on average than the ELA
questions, as measured by the mean discrimination parameter, āq (1.23 vs. 1.02).

These differences meant that the derivative of expected proficiency for marginally-proficient
students was much larger in math. Panel B of Figure 1 plots expected proficiency in math
(red circles) and ELA (black triangles) at 0.1 increments of ability. At 50 percent expected
proficiency, the derivative with respect to θi is 2.6 for the math exam. This means that a 0.1
unit increase in a student’s ability would increase their likelihood of achieving proficiency by
26 percentage points. For the ELA exam, the derivative at θi = θ was only 1.4.

Test prep incentives also depend on the proficiency standard, which affects the number
of students who are near the proficiency margin. Panel B illustrates this with vertical
bars, which show the ability distributions for each exam. New York’s 8th grade exams had
proficiency rates of 54 percent in math and 49 percent in ELA, so marginal students were in

15 Specifically, our simulated data gives us the density of post-prep ability, θi, while our framework is based
on the density of pre-prep ability, αi. The other key statistic in Proposition 1—the derivative of expected
proficiency at θ—is not affected by real-world test prep, as it depends only on the design of the exam.
16 Panel A does not plot a few very easy ELA questions (bq < −2) to make the graph more readable.
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the middle of the ability distribution for both exams. But the fraction of students near the
proficiency margin varied widely across exams in our sample, as we show below.

4.3. Summary statistics for all test takers. Table 2 presents summary statistics for the
exams in our sample. Our sample contains 122 exams, which come from six states (FL, IL,
MA, NY, NC, TX), two years (pre-NCLB and NCLB era), two subjects (math and ELA),
and up to six grade levels.17 Panel A reports averages over all 122 exams. Panels B–C
present statistics for each state in the pre-NCLB and NCLB years. Within each panel, we
show averages computed over the state’s grade 3–5 and grade 6–8 exams.

The statistics in Table 2 correspond to the average student who took each exam (computed
in our simulations). We discuss results for the average student before turning to marginally-
proficient students so that we can highlight overall differences between math and ELA exams.
For the average test taker, Table 2 shows the likelihood of achieving proficiency (columns
A–B), the proportion of correct answers (columns C–D), and the derivative of the proportion
of correct answers with respect to ability, θi. (columns E–F).

We find that math and ELA exams differed in each of these three statistics. First, math
exams tended to have lower proficiency rates than ELA exams (columns A–B). Across all
states, grades, and time periods, 66 percent of math test takers achieved proficiency, as
compared with 70 percent of ELA test takers (Panel A). This difference was most pronounced
for grade 6–8 exams in the NCLB era, for which math proficiency was 10 percentage points
lower than ELA proficiency (0.61 vs. 0.71). The difference in proficiency rates was modest in
other grades and time periods, but there was wide variation across states (e.g., Massachusetts
vs. Texas) and over time (e.g., in Illinois). This shows that test designers tended to set a
“higher bar” for achieving proficiency in math exams than in ELA exams (relative to the
ability of the average test taker).

Second, math exams were systematically harder for the average test taker (columns C–D).
Across all exams, math test takers got 63 percent of the questions correct, as compared with
70 percent correct in ELA (Panel A). This difference is again more pronounced in grades
6–8, for which the proportion correct was roughly 10 percentage points lower in math than
in ELA in both time periods. Thus test designers tended to write more difficult questions
in math than in ELA, particularly at higher grade levels.18

Finally, the derivative of the probability of a correct answer was larger for the average
test taker in math than in ELA (columns E–F). This statistic is the mean value of the
derivative of equation (4) with respect to θi, or p′q(θi). The average value of this derivative
was 0.18 in math and 0.16 in ELA (Panel A); these values imply that a 0.1 unit increase
17 In the pre-NCLB years, some states administered tests in only a few grades.
18 We emphasize that the proficiency standard and question difficulty are two distinct exam design choices.
For example, a test could contain only easy questions, but require a near perfect score to achieve proficiency.
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in a test taker’s ability would increase the proportion of correct answers by 1.8pp in math
and 1.6pp in ELA. This variation is attributable to differences in the difficulty of math and
ELA exams (columns C–D); question difficulty was typically better-aligned with the ability
of the average test taker in math than in ELA.

These differences between math and ELA tests created different incentives for educators
to prepare marginally-proficient students for exams. We now turn to these results.

4.4. Main results. Table 3 presents our main results on the factors that affect test prep
incentives as described in Proposition 1. This table has the same structure as Table 2, but
we present statistics from our simulations for test takers on the proficiency margin, i.e., those
with ability θi = θ. Columns (A)–(B) show the density of the ability distribution at θ, and
columns (C)–(D) show the derivative of expected proficiency, dE[τ(Ri)|θi]/dθi, evaluated at
θi = θ. These correspond to the two factors that affect the teacher’s optimal level of test
prep effort in Proposition 1. Columns (E)–(F) in Table 3 show the product of these two
terms, and column (G) shows the math/ELA ratio of these products.

Our main finding is that the incentives for test prep were typically stronger in math than
in ELA. Both of the factors in Proposition 1 contributed to this pattern.

First, there were more students near the proficiency margin in math than in ELA (columns
A–B). Averaged across all exams in our sample, the density of the ability distribution near
the proficiency margin was 0.32 in math and 0.30 in ELA. These density values imply that
the number of marginally-proficient students was roughly seven percent greater in math than
in ELA on average (0.32/0.30 ≈ 1.07). The math/ELA difference in density values is most
pronounced for grade 6–8 exams in the NCLB era (0.34 vs. 0.30). This pattern arises because
the bar for achieving proficiency was typically closer to the middle of the statewide ability
distribution in math than in ELA (see Table 2).

Second, the derivative of expected proficiency for marginally-proficient students was larger
in math than in ELA. Averaged across all exams, this derivative is 1.50 in math and 1.32 in
ELA. This implies that a 0.1 unit increase in a marginally-proficient test taker’s ability would
increase their likelihood of achieving proficiency by 15pp in math, and 13pp in ELA. This
pattern is systematic across the exams in our sample; the derivative of expected proficiency
is larger in math for nearly all exam groups in Table 3. This is partly due to the fact that
math exams were more difficult than ELA exams (Table 2), as we discuss in more detail in
Section 4.5.

Thus the product of the two factors that affect test prep incentives is systematically higher
in math than in ELA. On average, the product of the density of the ability distribution and
the derivative of expected proficiency for marginally-proficient students was 0.49 in math,
and 0.40 in ELA (columns E–F). The ratio of these two products is 1.22, suggesting that
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incentives for test prep as defined by Proposition 1 were 22 percent higher in math. The
math/ELA ratio of these products is the largest for grade 6–8 exams in the NCLB era (Panel
C), but this ratio is above one for the vast majority of exam groups in our sample.

Table 4 shows that these math/ELA differences are statistically significant at conventional
levels. In this table, we regress the statistics from our simulations on an indicator for the
math exam and state × year × grade fixed effects. Panel A uses dependent variables that
correspond to the summary statistics for all exam takers from Table 2. Panel B uses the
statistics for marginally-proficient test takers from Table 3 as outcome variables. Column
(A) shows the mean value of each statistic for ELA exams, and column (B) displays the
coefficient on the math indicator in a regression with all 122 exams. All of the math/ELA
differences discussed above are significant at p < 0.05. The last row of Panel B shows that
our main result—the product of the test prep factors—is significantly larger in math than in
ELA at p < 0.01. Columns (C)–(F) in Table 4 report regression results separately by grade
group (3–5 vs. 6–8) and time period (pre-NCLB vs. NCLB era). The math/ELA differences
continue to be statistically significant in most cases despite the smaller number of exams.

4.5. Exam design components. The most systematic pattern in Table 3 is that the de-
rivative of expected proficiency is larger in math than in ELA near the proficiency margin.
This subsection shows that this pattern can be explained by differences in the structure of
math and ELA exams.

Figure 2 displays four elements of exam structure for our sample of exams. Each panel
plots exam design parameters in math (y-axis) against parameters for the ELA exam (x-axis)
in the same state, year, and grade group. The marker text indicates the state and year (e.g.,
MA-06), and the color indicates the grades (blue = 3–5; grey = 6–8). Panel A shows how the
difficulty of the exam questions aligned with the ability of marginally-proficient test takers,
as measured by the mean squared error (MSE) between bq and θ.19 Panels B–D show the
number of questions, Q, the mean discrimination parameter, aq, and the mean guessability
parameter, cq. Each panel includes a 45 degree line to illustrate whether parameters tend to
be higher in math or ELA.

There are significant differences between math and ELA exams in each of these design
components. Specifically, we find that:

• Panel A. Math question difficulty was typically closer to the level of marginally-
proficient ability than ELA question difficulty, with an average difference in MSE of
0.28 (in standardized units of ability).

19 As an example, the blue MA-06 marker in Panel A shows that the MSE between bq and θ for the 2006
grade 3–5 exams in Massachusetts was 1.9 in math, and 2.6 in ELA. This marker is below the 45 degree line,
implying that question difficulty in the ELA exam was less aligned with the ability of marginally-proficient
test takers than in the math exam.
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• Panel B. Math exams featured 8 more questions than ELA exams on average.
• Panel C. Math questions were more discriminating than ELA questions on average,
with a mean gap in aq of 0.06.
• Panel D. Math questions were about 2 percentage points less “guessable” than ELA
questions on average.

Table 5 shows that each of these factors are related to a larger derivative of expected
proficiency for marginally-proficient students. This table presents regression results where
the dependent variable is the derivative of expected proficiency at θi = θ, and the covariates
are the four exam design components from Figure 2. We standardize each covariate to be
mean zero and SD one in our full sample of exams, so coefficients represent the effect of a
one standard deviation increase in each parameter. We find that the derivative of expected
proficiency at θi = θ is increasing in mean question discrimination, aq, and the total number
of questions, Q. This derivative is decreasing in mean question guessability, cq, and the MSE
between bq and θ.20 Taken together, the results from Figure 2 and Table 5 show that all four
design components contributed to the larger derivative of expected proficiency in math, and
the contribution of each component was similar in magnitude (column F of Table 5).

4.6. Sensitivity checks. Our main results are robust to using a subset of our sample with
the highest-quality data on exam design. Our full sample includes some exams for which we
only observe the distribution of IRT parameters, rather than the IRT parameters for each
individual question (see Appendix Table C2). In other cases we observe p-values (proportion
of correct answers) for each question rather than the IRT parameters. Appendix Table A3
shows that we continue to find stronger test prep incentives in math relative to ELA if we
focus only on exams with question-level IRT data.

Our findings are also robust to an alternate method of weighting the distribution of test
taker ability, θi. For our main analysis, we re-weight the distribution of θi to match the
statewide distribution of scores in the year that the exam was administered. As a robustness
check, we do not re-weight, and instead assume ability follows a standard normal distribution,
i.e., θi ∼ N(0, 1). This is the assumption that test designers make when they set the scale
for an exam. Thus, this robustness check shows how our findings would change if the exams
in our sample were given to their reference populations rather than to the students who
actually took the exams.21 Appendix Table A3 shows that this alternate weighting method
does not change our finding that test prep incentives are stronger in math than in ELA.

As a final sensitivity check, we show how our results vary with the definition of the
“proficiency margin.” Our benchmark results are for the level of ability, θ, at which the
20 Appendix Table A2 shows that the derivative of expected proficiency at θi = θ has a concave relationship
with the number of questions, Q, and with the MSE between bq and θ.
21 The reference population is often the set of test takers in the first year that an exam was administered.
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likelihood of achieving proficiency is 50 percent. Table 6 shows how these results change
when we use a wider bandwidth around θ. Specifically, we compute the density of the ability
distribution, the derivative of expected proficiency, and the product of these two terms at θ ±
h, where h takes the values 0.2, 0.4, 0.6, and 0.8. We compute the average of each statistic
within these bandwidths, and use these averages as the dependent variables in Table 6.
Column (B) replicates our benchmark results from Panel B of Table 4, and columns (C)–(F)
show results with different bandwidths. At the bottom of Table 6 we report the expected
proficiency rate at the low and high end of each ability range (θ − h and θ + h).

The results in Table 6 show that the derivative of expected proficiency is larger in math
than in ELA over a significant range around θ, but this difference disappears at wide band-
widths. Column (C) shows that our main results are similar when we include ability levels
within h = 0.2 units of the proficiency margin, θ; this includes test takers with expected
proficiency ranging from 30–70 percent. The math/ELA difference in the derivative of ex-
pected proficiency fades as we widen the bandwidth, and it is equal to zero at a bandwidth
of h = 0.8 (column F). The bandwidth of θ ± 0.8 is very wide in the sense that it includes
test takers with expected proficiency ranging from 1–99 percent. This convergence arises
because, relative to math exams, ELA exams typically measured ability more precisely for
students who were far from the proficiency margin.22

We do not view the evidence in Table 6 as indicating that our results are not robust; rather,
it illustrates that our conclusions rely on the assumption that teachers focus their test prep
on marginally-proficient students. Our hypothesis does not hold if teachers’ test prep has
significant benefits for students who are well above or well below the proficiency margin, as
ELA exams measure learning more precisely for these students. There is compelling evidence
that teachers adjust their practices and level of instruction in response to incentives (Neal and
Schanzenbach, 2010; Duflo et al., 2011; Kane et al., 2011). Thus we believe that differences
in the design of math and ELA exams are likely to affect teacher behavior, particularly when
they are held accountable by policies that emphasize proficiency rates.

4.7. Why are math exams more discriminating at the proficiency margin? Our
results show that math exams were systematically more informative for ability near the
proficiency margin than ELA exams during 2000–2008. We think this is likely to be a
general phenomenon, for several reasons.

It is often said that math requires cumulative knowledge, i.e., that future learning depends
critically upon past learning.23 This would lead math questions to be more discriminating on

22 The main reason that ELA exams measure ability more precisely far from the proficiency margin is
illustrated in Panel A of Figure 2: the SD of question difficulty tends to be higher in ELA than in math.
23 As the psychologist Steven Pinker put it: “Mathematics is ruthlessly cumulative, all the way back to
counting to ten” (Pinker, 1997).
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a unidimensional scale of ability (as measured by the aq parameter). Specifically, this adage
implies that the likelihood that a low-ability test taker correctly answers a hard question is
lower in math than in ELA. One might also argue that math questions are less subjective
than ELA questions, which may make them harder for low-ability test takers to guess (as
measured by the cq parameter).

The nature of learning in math may make it easier to write an exam that is a precise
measure of proficiency. The ideal exam is highly informative for ability in the region that
educators care most about. Exam designers try out potential questions and eliminate those
that are too hard, too easy, or not discriminating enough, but this takes time and resources
(Chingos, 2012; Topol et al., 2012). If math requires cumulative learning, there may be
more agreement on what it means to be proficient. It is easier to write exam questions that
are informative about student proficiency when there is more agreement on the standards
(Bergman et al., 2021). There is also a longstanding concern about U.S. students’ underper-
formance in mathematics (Goodman, 2019). This may explain why test designers tend to
set higher proficiency standards in math than in ELA (relative to the distribution of student
ability).

Lastly, math questions can usually be described briefly, while ELA exams often feature
reading passages. Thus ELA tests must allow time for students to read before they start
answering questions. This fact would allow math exams to feature more questions in a fixed
block of time, as we found in Panel B of Figure 2.

Test designers could modify some of these design features to equalize the test prep incen-
tives in math and ELA exams (if they wished to do so). For example, test designers could
add extra questions to ELA exams and allow for more time in the exam administration.
They could also devote more effort to screening potential ELA questions based on their
difficulty and discrimination.

5. Relationship between test prep incentives and literature estimates

This section discusses the implications of our findings in Section 4 for the literature pat-
terns that we documented in Section 2.

5.1. Theoretical relationship. Under the assumptions of our framework, differences in
the design of math and ELA exams can partly explain why math effects tend to be larger
in the literatures in Table 1. Research on accountability policies measures the effects of an
increase in the stakes of an exam, which gives teachers an incentive to engage in more test
prep. Proposition 1 predicts that the increase in test prep effort would be larger in math
than in ELA because there are greater returns in terms of proficiency. Similarly, good schools
or good teachers may be better at converting effort into test score gains, or they may have
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lower costs of effort. If these actors choose effort as in our framework, the effects of admission
to a good charter school would be larger in math than in ELA, and the variation in teacher
value added would be larger in math. Appendix B.4 provides a more formal discussion of
these arguments.

A simple comparison of magnitudes suggests that test prep incentives can account for
some portion—but not all—of the variation in math and ELA effects in the literature. The
math estimates in the literature are roughly 50 percent larger than the ELA estimates on
average (Table 1), while the mean difference in test prep incentives is 22 percent (Table 3).
The precise connection between these statistics depends on many features of the education
production function, which we do not quantify in this paper. While simply suggestive, we
think these magnitudes present a compelling case for test prep incentives as a plausible
explanation for the pattern in the literature.

5.2. Empirical relationship. To explore this relationship empirically, we link the results
of our simulations to the estimates from our literature review. Specifically, we begin with
the math/ELA ratio of literature estimates from column (H) of Table 1. In 19 cases, the
authors’ data comes from one of the states in our sample of exams. We link these 19 literature
estimates to our simulation results using the grades and time periods (pre-NCLB and NCLB
era) that match the authors’ sample. For example, we link our results for the Massachusetts
exams in 2000 (grade 8) and 2006 (grades 6–8) to Abdulkadiroğlu et al. (2011)’s estimates
for Boston charter school students in 2002–2008 (grades 6–8).24 Our explanatory variable of
interest is the math/ELA ratio of test prep incentives for marginally-proficient students, as
in column (G) of Table 3. We compute the average of this ratio over all exams that link to
the authors’ sample, and relate this to the math/ELA ratio of the authors’ estimates.

Figure 3 shows that there is a strong positive relationship between the math/ELA ratios
of test prep incentives and literature estimates. The y-axis in this figure is the math/ELA
ratio of the authors’ estimates, and the x-axis is the mean math/ELA ratio of test prep
incentives from our simulations. The text of each marker indicates the paper, with paren-
theses indicating the grades included in the authors’ samples. The dashed line shows that
these variables are positively related with a slope of approximately 0.8. This implies that a
10 percent increase in the math/ELA ratio of test prep incentives is associated with an eight
percent increase in the math/ELA ratio of literature estimates.

24 To increase the number of matches, we do not require that the exam years are exactly the same as
the authors’ sample years, but only that they come from the same pre-NCLB and/or NCLB period. This
implicitly assumes that the exam structure is similar over time, which is an important objective for test
designers.

18



Table 7 presents results from regressions that are analogous to Figure 3. This table
displays OLS coefficients from bivariate regressions of the ratio of literature estimates (y-
axis in Figure 3) on the ratio of test prep incentives (x-axis in Figure 3). Column (A) includes
all 19 matched estimates in the regression, and columns (B)–(D) present results separately
for the accountability, charter school, and teacher value added papers. To reduce noise from
outliers, we winsorize the dependent variable by setting the maximum/minimum literature
estimates to their 90th/10th percentile values.25 Panel A shows our preferred specification,
which weights each literature estimate by the number of matched exams from our sample.
This specification gives more weight to observations for which we have more data to estimate
the strength of test prep incentives. Panel B presents results that instead give equal weight
to each literature estimate, regardless of the number of matched exams.26

The OLS relationship between the math/ELA ratios of test prep incentives and literature
estimates is 0.83 in our preferred specification, and it is statistically significant at p < 0.01
(column A). This relationship is strongest in the five papers in the accountability literature,
with a coefficient above two (column B). There is also a strong relationship between these
variables in the charter school papers (column C), although slightly smaller in magnitude.
The relationship is weaker but still positive in the teacher value added literature (column
D), consistent with the discussion in Section 2.

In sum, Figure 3 and Table 7 provide evidence that variation in test prep incentives can
explain variation in math and ELA estimates from the literature. This relationship is large
in magnitude and statistically significant despite the small number of papers. Both of these
facts suggest that differential incentives for test prep are an important mechanism in papers
where accountability is important.

5.3. Generalizability to other states. We next ask whether our findings generalize to
states that we did not include in our main analysis. Figure 4 displays data on the structure
of standardized exams in other states during the NCLB era. Panel A shows the proficiency
rate in each state averaged across all grade 4 and 8 test takers in 2007; this information
comes from the National Assessment of Educational Progress (NAEP) and covers nearly all
50 states. Panels B–D present data from the technical reports that we were able to find for
exams in the early NCLB era (2006–2009).27 These panels show the proportion of correct
25 This changes the math/ELA ratio of Dobbie and Fryer Jr (2011)’s grade 6–8 estimates from 4.87 to 2,
and it changes the ratio of Hoxby and Rockoff (2004)’s estimates from 0.47 to 1.05. We find qualitatively
similar results without winsorizing or dropping these two studies, but the estimates are noisier (see Appendix
Tables A4–A5). In Figure 3, we moved Dobbie and Fryer Jr (2011)’s grade 6–8 estimate from 4.87 to 2.5 to
improve readability.
26 In both panels, we cluster standard errors at the literature estimate level.
27 Education data from states that are not in our main sample are generally hard to obtain (which is why
there are few papers on these states in the literature). Appendix Table C1 shows the states and years for
which we could find technical reports.

19



answers averaged across all grades (Panel B), the mean number of questions (Panel C), and
the mean discrimination parameter, aq (Panel D). We show values for the six states in our
main sample in blue, and values for other states in grey. Figure 4 otherwise has the same
structure as Figure 2, with math values on the y-axes, and ELA values on the x-axes.

Figure 4 shows that the patterns of exam structure that we identified in our main sample
also hold in other states. Specifically, we find that:

• Panel A. Math exams had lower proficiency rates than ELA exams on average (0.67
vs. 0.72).
• Panel B. Math exams were more difficult than ELA exams, as measured by the mean
proportion of correct answers (0.61 vs. 0.65).
• Panel C. Math exams contained more questions than ELA exams on average (63 vs.
57).
• Panel D. Math questions were more discriminating than ELA questions, as measured
by the mean value of the aq parameter (0.94 vs. 0.85).

These patterns are the same as those in Table 2 and Figure 2 above. Further, Figure 4 shows
that the states in our sample are not outliers relative to other states. This suggests that our
finding of stronger test prep incentives in math is not unique to the states in our analysis.

If our findings generalize to other states, then test prep may also be an important mecha-
nism in national studies of NCLB. Our literature review included two papers that examined
the effects of NCLB, and both found significantly higher effects in math than in ELA (Wong
et al., 2009; Dee and Jacob, 2011). The patterns in Figure 4 suggest that differences be-
tween math and ELA in test prep incentives may partly contribute to this finding. A caveat
is that the test prep incentives under NCLB were complex because schools had to achieve
proficiency in different subgroups of students. NCLB also included safe harbor provisions for
schools that did not meet the main proficiency standards, and these provisions varied both
across states and subjects (Ahn and Vigdor, 2014).

5.4. Math/ELA estimates in research on class size. As further evidence that account-
ability pressures contribute to the pattern of larger math effects, we note that this pattern
does not arise in an older literature on the impacts of class size on student achievement.28

Many papers in this literature use U.S. data from the 1980s or earlier, before the adoption
of consequential state accountability policies (Dee and Jacob, 2011). In a meta-analysis of
80 studies conducted between 1895 and 1978, Glass and Smith (1979) find that instruction

28 We are grateful to the editor for this insightful observation.
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subject (math, reading, etc.) was not a significant predictor of the relationship between class
size and achievement.29

Appendix Table A7 shows that math and ELA estimates tend to be similar in the most
prominent and well-identified papers in the class size literature.30 Across six class size pa-
pers that use data from settings with low accountability, we find that the average ratio
of math/ELA point estimates is 0.89. This includes Krueger (1999)’s analysis of the Ten-
nessee Student/Teacher Achievement Ratio (STAR) experiment, which finds, if anything,
smaller gains in math than in reading from class size reductions.31 In international set-
tings where standardized exams were administered without much accountability—Israel and
Bolivia—Angrist and Lavy (1999) and Urquiola (2006) find broadly similar effects in math
and language arts, depending on the specification. Notably, Appendix Table A7 also in-
cludes three papers that use data from the 1990s in U.S. states after the implementation of
an accountability policy: Wisconsin (Molnar et al., 1999), Texas (Rivkin et al., 2005), and
California (Jepsen and Rivkin, 2009). Each of these papers finds larger point estimates in
math than in ELA, with an average math/ELA ratio of 1.34.

Although not conclusive, the findings from class size research suggest that accountability
pressures are an important driver of variation in math and ELA estimates in other literatures.
If the pattern of larger math effects was only driven by differences in the education production
function for each subject, one would expect this pattern to also appear in class size research
from years with low accountability.

6. Conclusion

This paper showed that the design of standardized accountability exams affects incentives
for educators to engage in test prep. Using data on grade 3–8 state exams in 2000–2008,
we showed that math exams often had more students near the proficiency margin than ELA
exams, and they typically measured ability more precisely in this region. This created an
incentive for teachers to spend more time on math prep than on ELA prep, consistent with
the common finding of larger math effects in literatures where accountability matters. Our
results suggest that accountability pressures and test prep incentives are an important driver
of this pattern, although other factors likely play a role as well.

29 Glass and Smith do not report separate estimates for math and reading, but they write: “Among those
factors of discrimination that produced virtually identical regression lines were ... ‘subject taught’ ” (p. 12).
30 There is disagreement on how to interpret the evidence from this literature (Hanushek, 1997; Krueger,
2003), but many well-identified papers find that class size reductions increase achievement (Schanzenbach,
2014).
31 Hoxby (2000) uses Connecticut data from 1986–1998 and employs two different identification strategies to
estimate class size effects. Hoxby’s estimates do not vary systematically between math and ELA, although
she characterizes the results as precisely-estimated zeroes.
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We think our findings are attributable to several inherent features of math that make
it an easier subject to test, and thus are likely to affect teacher behavior. Yet test prep
incentives vary widely across settings, and standardized exams are frequently redesigned.
In the 2010s, for example, the Common Core movement led several states to switch to
the PARCC assessments, which were notoriously long and difficult (Jochim and McGuinn,
2016). More recently, many states have adopted computer adaptive testing, which increases
precision by tailoring question difficulty to each student (Martin and Lazendic, 2018).

Thus we advise researchers to provide information on accountability policies and exam
structure when they use test scores as outcome variables. It is important to know which
exam metrics are used for accountability and the number of students who are likely to be
on the margin of achieving these metrics. In the case of a binary proficiency standard, the
proficiency rate is a simple and informative statistic that describes where marginal test takers
fall in the distribution of ability. Researchers should also report features of exam design that
affect how precisely the exam measures ability, such as the average difficulty and number
of questions.32 This can shed light on whether variation in estimates across subjects may
be driven by test prep, and whether effects are likely to generalize to settings with different
exams and accountability pressures.

32 Many technical reports also include the exam’s Standard Error of Measurement, which shows how preci-
sion varies across the range of scores.

22



References

Abdulkadiroğlu, A., J. D. Angrist, S. M. Dynarski, T. J. Kane, and P. A. Pathak (2011).
Accountability and flexibility in public schools: Evidence from Boston’s charters and pilots.
The Quarterly Journal of Economics 126 (2), 699–748.

Ahn, T. and J. Vigdor (2014). The impact of No Child Left Behind’s accountability sanctions
on school performance: Regression discontinuity evidence from North Carolina. NBER
Working Paper No. 20511.

Akerhielm, K. (1995). Does class size matter? Economics of Education Review 14 (3),
229–241.

Angrist, J. D. and V. Lavy (1999). Using maimonides’ rule to estimate the effect of class
size on scholastic achievement. The Quarterly journal of economics 114 (2), 533–575.

Aucejo, E., T. Romano, and E. S. Taylor (2020). Does evaluation change teacher effort and
performance? quasi-experimental evidence from a policy of retesting students. The Review
of Economics and Statistics, 1–45.

Bacher-Hicks, A., T. J. Kane, and D. O. Staiger (2014). Validating teacher effect estimates
using changes in teacher assignments in Los Angeles. Technical report, National Bureau
of Economic Research.

Bergbauer, A., E. A. Hanushek, and L. Woessmann (2018). Testing. NBER Working Paper
No. 24836.

Bergman, P., E. Kopko, and J. E. Rodriguez (2021). Using predictive analytics to track
students: Evidence from a seven-college experiment. NBER Working Paper No. 28948.

Chay, K. Y., P. J. McEwan, and M. Urquiola (2005). The central role of noise in evaluating
interventions that use test scores to rank schools. American Economic Review 95 (4),
1237–1258.

Chetty, R., J. N. Friedman, and J. E. Rockoff (2014a). Measuring the impacts of teachers I:
Evaluating bias in teacher value-added estimates. The American Economic Review 104 (9),
2593–2632.

Chetty, R., J. N. Friedman, and J. E. Rockoff (2014b). Measuring the impacts of teach-
ers II: Teacher value-added and student outcomes in adulthood. American Economic
Review 104 (9), 2633–2679.

Chiang, H. (2009). How accountability pressure on failing schools affects student achieve-
ment. Journal of Public Economics 93 (9-10), 1045–1057.

Chingos, M. M. (2012). Strength in numbers: State spending on K-12 assessment systems.
Technical report, Brown Center on Education Policy at Brookings.

Cohodes, S. R., E. M. Setren, and C. R. Walters (2021). Can successful schools replicate?
scaling up boston’s charter school sector. American Economic Journal: Economic Pol-
icy 13 (1), 138–67.

Condie, S., L. Lefgren, and D. Sims (2014). Teacher heterogeneity, value-added and education
policy. Economics of Education Review 40, 76–92.

Corcoran, S. P., J. L. Jennings, and A. A. Beveridge (2011). Teacher effectiveness on high-and
low-stakes tests. Society for Research on Educational Effectiveness.

Craig, S. G., S. A. Imberman, and A. Perdue (2013). Does it pay to get an A? school resource
allocations in response to accountability ratings. Journal of Urban Economics 73 (1), 30–
42.

23



Curto, V. E. and R. G. Fryer Jr (2014). The potential of urban boarding schools for the
poor: Evidence from seed. Journal of Labor Economics 32 (1), 65–93.

Dee, T. S. and B. Jacob (2011). The impact of No Child Left Behind on student achievement.
Journal of Policy Analysis and Management 30 (3), 418–446.

Dobbie, W. and R. G. Fryer Jr (2011). Are high-quality schools enough to increase achieve-
ment among the poor? evidence from the harlem children’s zone. American Economic
Journal: Applied Economics 3 (3), 158–87.

Duflo, E., P. Dupas, and M. Kremer (2011). Peer effects, teacher incentives, and the im-
pact of tracking: Evidence from a randomized evaluation in Kenya. American Economic
Review 101 (5), 1739–1774.

Epple, D., R. Romano, and R. Zimmer (2016). Charter schools: A survey of research on their
characteristics and effectiveness. In Handbook of the Economics of Education, Volume 5,
pp. 139–208. Elsevier.

Figlio, D. and S. Loeb (2011). School accountability. In Handbook of the Economics of
Education, Volume 3, pp. 383–421. Elsevier.

Figlio, D. N. and C. E. Rouse (2006). Do accountability and voucher threats improve low-
performing schools? Journal of Public Economics 90 (1-2), 239–255.

Figlio, D. N. and J. Winicki (2005). Food for thought: the effects of school accountability
plans on school nutrition. Journal of Public Economics 89 (2-3), 381–394.

Fuller, B., J. Wright, K. Gesicki, and E. Kang (2007). Gauging growth: How to judge No
Child Left Behind? Educational Researcher 36 (5), 268–278.

Glass, G. V. and M. L. Smith (1979). Meta-analysis of research on class size and achievement.
Educational evaluation and policy analysis 1 (1), 2–16.

Gleason, P., M. Clark, C. C. Tuttle, and E. Dwoyer (2010). The evaluation of charter school
impacts: Final report. ncee 2010-4029. Technical report, National Center for Education
Evaluation and Regional Assistance.

Goldhaber, D., J. Cowan, and J. Walch (2013). Is a good elementary teacher always good? as-
sessing teacher performance estimates across subjects. Economics of Education Review 36,
216–228.

Goodman, J. (2019). The labor of division: Returns to compulsory high school math course-
work. Journal of Labor Economics 37 (4), 1141–1182.

Hanushek, E. A. (1997). Assessing the effects of school resources on student performance:
An update. Educational Evaluation and Policy Analysis 19 (2), 141–164.

Hemelt, S. W. (2011). Performance effects of failure to make Adequate Yearly Progress
(AYP): Evidence from a regression discontinuity framework. Economics of Education
Review 30 (4), 702–723.

Ho, A. D. (2008). The problem with “proficiency”: Limitations of statistics and policy under
No Child Left Behind. Educational Researcher 37 (6), 351–360.

Holmstrom, B. and P. Milgrom (1991). Multitask principal-agent analyses: Incentive con-
tracts, asset ownership, and job design. Journal of Law, Economics and Organization 7 (1),
24–52.

Hoxby, C. M. (2000). The effects of class size on student achievement: New evidence from
population variation. The Quarterly Journal of Economics 115 (4), 1239–1285.

Hoxby, C. M., J. Kang, and S. Murarka (2009). Technical report: How New York City
charter schools affect achievement. New York City Charter Schools Evaluation Project.

24



Retrieved July 5, 2013.
Hoxby, C. M. and J. E. Rockoff (2004). The impact of charter schools on student achievement.
Department of Economics, Harvard University Cambridge, MA.

Imberman, S. A. and M. F. Lovenheim (2015). Incentive strength and teacher productivity:
Evidence from a group-based teacher incentive pay system. Review of Economics and
Statistics 97 (2), 364–386.

Jackson, C. K. (2018). What do test scores miss? the importance of teacher effects on
non–test score outcomes. Journal of Political Economy 126 (5), 2072–2107.

Jackson, C. K., J. E. Rockoff, and D. O. Staiger (2014). Teacher effects and teacher-related
policies. Annu. Rev. Econ. 6 (1), 801–825.

Jacob, B. and J. Rothstein (2016). The measurement of student ability in modern assessment
systems. Journal of Economic Perspectives 30 (3), 85–108.

Jacob, B. A. (2005). Accountability, incentives and behavior: The impact of high-stakes
testing in the Chicago Public Schools. Journal of Public Economics 89 (5-6), 761–796.

Jacob, B. A. and L. Lefgren (2008). Can principals identify effective teachers? evidence
on subjective performance evaluation in education. Journal of Labor Economics 26 (1),
101–136.

Jacob, B. A. and S. D. Levitt (2003). Rotten apples: An investigation of the prevalence and
predictors of teacher cheating. The Quarterly Journal of Economics 118 (3), 843–877.

Jennings, J. L. and J. M. Bearak (2014). “Teaching to the test” in the NCLB era: How
test predictability affects our understanding of student performance. Educational Re-
searcher 43 (8), 381–389.

Jepsen, C. and S. Rivkin (2009). Class size reduction and student achievement the potential
tradeoff between teacher quality and class size. Journal of human resources 44 (1), 223–
250.

Jochim, A. and P. McGuinn (2016). The politics of the Common Core assessments: Why
states are quitting the PARCC and Smarter Balanced testing consortia. Education
Next 16 (4), 44–53.

Jones, M. G., B. D. Jones, B. Hardin, L. Chapman, T. Yarbrough, and M. Davis (1999).
The impact of high-stakes testing on teachers and students in North Carolina. The Phi
Delta Kappan 81 (3), 199–203.

Kane, T. J., J. E. Rockoff, and D. O. Staiger (2008). What does certification tell us about
teacher effectiveness? evidence from New York City. Economics of Education review 27 (6),
615–631.

Kane, T. J. and D. O. Staiger (2002). The promise and pitfalls of using imprecise school
accountability measures. Journal of Economic Perspectives 16 (4), 91–114.

Kane, T. J. and D. O. Staiger (2008). Estimating teacher impacts on student achievement:
An experimental evaluation. Technical report, National Bureau of Economic Research.

Kane, T. J. and D. O. Staiger (2012). Gathering feedback for teaching: Combining high-
quality observations with student surveys and achievement gains. Technical report, Bill
& Melinda Gates Foundation MET Project Research Paper.

Kane, T. J., D. O. Staiger, D. Grissmer, and H. F. Ladd (2002). Volatility in school test
scores: Implications for test-based accountability systems. Brookings Papers on Education
Policy (5), 235–283.

25



Kane, T. J., E. S. Taylor, J. H. Tyler, and A. L. Wooten (2011). Identifying effective
classroom practices using student achievement data. Journal of human Resources 46 (3),
587–613.

Koedel, C., K. Mihaly, and J. E. Rockoff (2015). Value-added modeling: A review. Economics
of Education Review 47, 180–195.

Koretz, D. M. et al. (1996). Perceived effects of the Kentucky Instructional Results Informa-
tion System (KIRIS). Technical report, RAND Corporation Institute on Education and
Training.

Krueger, A. B. (1999). Experimental estimates of education production functions. The
quarterly journal of economics 114 (2), 497–532.

Krueger, A. B. (2003). Economic considerations and class size. The Economic Jour-
nal 113 (485), F34–F63.

Macartney, H., R. McMillan, and U. Petronijevic (2018). Teacher value-added and economic
agency. NBER Working Paper No. 24747.

Macartney, H., R. McMillan, and U. Petronijevic (2021). A quantitative framework for
analyzing the distributional effects of incentive schemes. NBER Working Paper No. 28816.

Martin, A. J. and G. Lazendic (2018). Computer-adaptive testing: Implications for stu-
dents’ achievement, motivation, engagement, and subjective test experience. Journal of
Educational Psychology 110 (1), 27.

McGiverin, J., D. Gilman, and C. Tillitski (1989). A meta-analysis of the relation between
class size and achievement. The Elementary School Journal 90 (1), 47–56.

Molnar, A., P. Smith, J. Zahorik, A. Palmer, A. Halbach, and K. Ehrle (1999). Evaluat-
ing the sage program: A pilot program in targeted pupil-teacher reduction in wisconsin.
Educational Evaluation and Policy Analysis 21 (2), 165–177.

Neal, D. and D. W. Schanzenbach (2010). Left behind by design: Proficiency counts and
test-based accountability. The Review of Economics and Statistics 92 (2), 263–283.

Nielsen, E. (2019). Test questions, economic outcomes, and inequality. Working paper.
Pedulla, J. J., L. M. Abrams, G. F. Madaus, M. K. Russell, M. A. Ramos, and J. Miao (2003).
Perceived effects of state-mandated testing programs on teaching and learning: Findings
from a national survey of teachers. Technical report, National Board on Educational
Testing and Public Policy.

Pinker, S. (1997). How the Mind Works. WW Norton & Company.
Reback, R. (2008). Teaching to the rating: School accountability and the distribution of
student achievement. Journal of Public Economics 92 (5-6), 1394–1415.

Reback, R., J. Rockoff, and H. L. Schwartz (2014). Under pressure: Job security, resource
allocation, and productivity in schools under No Child Left Behind. American Economic
Journal: Economic Policy 6 (3), 207–41.

Rivkin, S. G., E. A. Hanushek, and J. F. Kain (2005). Teachers, schools, and academic
achievement. Econometrica 73 (2), 417–458.

Rockoff, J. and L. J. Turner (2010). Short-run impacts of accountability on school quality.
American Economic Journal: Economic Policy 2 (4), 119–47.

Rothstein, J. (2010). Teacher quality in educational production: Tracking, decay, and student
achievement. The Quarterly Journal of Economics 125 (1), 175–214.

Rouse, C. E., J. Hannaway, D. Goldhaber, and D. Figlio (2013). Feeling the Florida heat?
how low-performing schools respond to voucher and accountability pressure. American

26



Economic Journal: Economic Policy 5 (2), 251–81.
Schanzenbach, D. W. (2014). Does class size matter? Technical report, National Education
Policy Center.

Springer, M. G. (2008). The influence of an NCLB accountability plan on the distribution
of student test score gains. Economics of Education Review 27 (5), 556–563.

Stecher, B. M. and K. J. Mitchell (1995). Portfolio-driven reform: Vermont teachers’ un-
derstanding of mathematical problem solving and related changes in classroom practice.
Technical report, National Center for Research on Evaluation, Standards, and Student
Testing.

Taylor, E. S. and J. H. Tyler (2012). The effect of evaluation on teacher performance.
American Economic Review 102 (7), 3628–51.

Topol, B., J. Olson, E. Roeber, and P. Hennon (2012). Getting to higher-quality assessments:
Evaluating costs, benefits, and investment strategies. Technical report, Stanford Center
for Opportunity Policy in Education.

Urquiola, M. (2006). Identifying class size effects in developing countries: Evidence from
rural Bolivia. Review of Economics and Statistics 88 (1), 171–177.

Wong, M., T. D. Cook, and P. M. Steiner (2009). No Child Left Behind: An interim
evaluation of its effects on learning using two interrupted time series each with its own
non-equivalent comparison series. Institute for Policy Research Working Paper Series.

27



Figures and tables

Exam questions: Math   ELA          

Level of 50% proficient:   Math     ELA

0.0

0.5

1.0

C
D

F 
of

 q
ue

st
io

ns

-2 -1 0 1 2
Question difficulty, bq

Panel A. Question difficulty

Expected proficiency: Math   ELA          

Ability distribution:   Math     ELA

0.0

0.5

1.0

Ex
pe

ct
ed

 p
ro

fic
ie

nc
y

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

-2 -1 0 1 2
Ability, θi

Panel B. Expected proficiency

Figure 1. New York 8th grade exams (2006)

Notes: This figure presents statistics on New York 8th grade math and ELA exams in 2006. In Panel A, markers
depict the cumulative distribution function of question difficulty, bq; we do not plot ELA questions with bq < −2 to
improve readability. Vertical dash lines represent the level of ability, θ, at which expected proficiency is 50 percent
in our simulations. In Panel B, lines depict expected proficiency (left axis) at 0.1 increment of ability, θi, from our
simulations. Vertical bars show the density of the ability distribution (right axis) at each ability level.
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Figure 2. Exam design parameters

Notes: This figure plots exam design parameters in math (y-axes) against parameters for the ELA exam (x-axes) in
the same state, year, and grade group. The text of each marker indicates the state and year (e.g., MA-06), and the
color indicates the grade group for which the statistics are averaged (blue = 3–5; grey = 6–8). The statistic for each
graph is listed in the panel title; see Appendix Table A1 for details. In Panel A, we moved the value for the MA-2000
grade 3–5 ELA exam from 4.1 to 2.9 to improve readability.
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Figure 3. Math/ELA ratios of test prep incentives and literature estimates

Notes: This figure plots the math/ELA ratios of literature estimates and test prep incentives for the exams in our
sample. The y-axis is the math/ELA ratio of literature estimates, as in column (H) of Table 1. We include the 19
literature estimates for which the state matches that in our sample of exams. The x-axis is the math/ELA ratio of
the density of the ability distribution × the derivative of expected proficiency (computed at the proficiency margin),
as in column (G) of Table 3. This value averages over the grades (3–8) and periods (pre-NCLB and NCLB era) that
match the sample for each literature estimate. We report the grade range for the matched samples in parentheses.
The dashed line shows the OLS relationship between the two variables. Marker sizes are proportional to the number
of exams in our sample that match the authors’ data range. We moved the value of the literature estimate for grades
6–8 in Dobbie and Fryer Jr (2011) from 4.87 to 2.5 to improve readability.
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Figure 4. Statistics and design parameters for NCLB era state exams (2006–2009)

Notes: This figure plots exam statistics in math (y-axes) against statistics for the ELA exam (x-axes) in the same state.
Panel A plots state proficiency rates for grade 4 and 8 exams in 2007 as reported by NAEP (available in October 2021
at: https://nces.ed.gov/nationsreportcard/studies/statemapping/2007_naep_state_table.asp). Panels B–D display
the proportion of correct answers, number of questions, and mean question discrimination from technical reports we
could find for states in the NCLB era (see Appendix Table C1). Statistics are averaged across all grade levels.
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Table 1. Literature estimates

(A) (B) (C) (D) (E) (F) (G) (H)

Main effects Ratio

Paper State District (if not state) Years Grades Math ELA (F)/(G)

Panel A. Accountability effects (Figlio and Loeb, 2011)

Chiang (2009) FL 2002–03 4–6 0.12 0.11 1.05
Rouse et al. (2013) FL 2003–05 5–7 0.09 0.08 1.18
Jacob (2005) IL Chicago 1993–00 3–8 0.33 0.24 1.40
Neal and Schanzenbach (2010) IL Chicago 2001–02 5 0.06 0.04 1.54
Rockoff and Turner (2010) NY New York City 2007–08 3–8 0.10 0.05 2.00
Wong et al. (2009) National 1990–09 4 0.41 0.19 2.16
Dee and Jacob (2011) National 1992–07 4 0.23 0.06 3.66

Average 0.19 0.11 1.75

Panel B. Charter school effects (Epple et al., 2016)

Curto and Fryer Jr (2014) DC 2008–09 7–8 0.22 0.20 1.08
Hoxby and Rockoff (2004) IL Chicago 2000–02 1–8 0.07 0.15 0.47
Abdulkadiroğlu et al. (2011) MA Boston 2002–08 6–8 0.42 0.25 1.64
Hoxby et al. (2009) NY New York City 2001–08 3–8 0.09 0.06 1.50
Dobbie and Fryer Jr (2011) NY New York City 2004–10 3–5 0.19 0.11 1.68
Dobbie and Fryer Jr (2011) NY New York City 2004–10 6–8 0.23 0.05 4.87
Gleason et al. (2010) National 2005–08 4–8 -0.08 -0.10 0.80

Average 0.16 0.10 1.57

Panel C. Standard deviation of teacher value added (Koedel et al., 2015)

Kane and Staiger (2008) CA Los Angeles 2000–03 2–5 0.22 0.18 1.25
Bacher-Hicks et al. (2014) CA Los Angeles 2005–11 3–5 0.29 0.19 1.52
Bacher-Hicks et al. (2014) CA Los Angeles 2005–11 6–8 0.21 0.10 2.12
Rothstein (2010) NC 2000–01 4–5 0.15 0.11 1.32
Condie et al. (2014) NC 1998–04 4–5 0.18 0.10 1.80
Goldhaber et al. (2013) NC 1999–05 3–5 0.24 0.19 1.27
Kane et al. (2008) NY New York City 1999–05 3–5 0.13 0.10 1.30
Kane et al. (2008) NY New York City 1999–05 6–8 0.08 0.06 1.33
Rivkin et al. (2005) TX 1995–98 5–7 0.11 0.10 1.16
Corcoran et al. (2011) TX Houston 1999–06 4–5 0.26 0.21 1.25
Jacob and Lefgren (2008) “Western U.S. district” 1998–05 2–6 0.26 0.12 2.17
Chetty et al. (2014a) “Large urban district” 1989–09 3–5 0.16 0.12 1.31
Chetty et al. (2014a) “Large urban district” 1989–09 6–8 0.13 0.08 1.70

Average 0.19 0.13 1.47

Notes: This table shows math and ELA estimates from studies cited in three literature review papers. Panel A
includes papers on the effects of accountability policies cited in Figlio and Loeb (2011) (their Tables 8.1–8.2). Panel
B includes papers on the effects of charter school admission from Epple et al. (2016) (their Table 6). Panel C includes
estimates of the standard deviation of teacher value added from papers cited throughout Koedel et al. (2015).

We include only papers that present effects on grade 3–8 scores in both math and ELA. We also exclude papers
with identification strategies that are typically perceived as less credible by researchers in the economics of education;
these include empirical designs based on control for observables, student fixed effects, and propensity score matching.

Column (A) lists the papers that meet these criteria. Columns (B)–(E) show the state, school district (if not
statewide), exam years (spring of academic year), and grades for the sample(s) in each paper. Columns (F)–(G) show
math and ELA estimates from the authors’ benchmark specification. Most estimates are in units of standardized test
scores (mean 0/SD 1), but the units differ in a few papers. In all cases, the math and ELA effects are from the same
specification and in the same units. Column (H) shows the ratio of columns (F) and (G).
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Table 2. Summary statistics for all exam takers

(A) (B) (C) (D) (E) (F)

Proportion Derivative of
Proficiency correct proportion

rate answers correct

State Grades Year Math ELA Math ELA Math ELA

Panel A. All exams (N = 122)

All exam mean 0.66 0.70 0.63 0.70 0.18 0.16

Panel B. Pre-NCLB exams (N = 50)

Florida 3-5 2003 0.56 0.60 0.57 0.64 0.18 0.16
Illinois 3,5 2000 0.59 0.54 0.58 0.62 0.18 0.17
Massachusetts 4 2000 0.40 0.20 0.57 0.61 0.19 0.15
New York 4 2002 0.68 0.64 0.66 0.70 0.25 0.19
North Carolina 3-5 2001 0.80 0.74 0.62 0.68 0.21 0.19
Texas 3-5 2001 0.89 0.89 0.76 0.83 0.14 0.11

Grade 3-5 mean 0.69 0.66 0.63 0.69 0.18 0.16

Florida 6-8 2003 0.50 0.51 0.49 0.64 0.16 0.16
Illinois 8 2000 0.42 0.61 0.55 0.64 0.18 0.18
Massachusetts 8 2000 0.34 0.61 0.50 0.61 0.19 0.15
New York 8 2002 0.38 0.47 0.54 0.61 0.29 0.21
North Carolina 6-8 2001 0.79 0.73 0.52 0.68 0.20 0.19
Texas 6-8 2001 0.91 0.89 0.75 0.82 0.14 0.12

Grade 6-8 mean 0.65 0.67 0.57 0.69 0.18 0.16

Panel C. NCLB era exams (N = 72)

Florida 3-5 2006 0.65 0.70 0.60 0.66 0.18 0.15
Illinois 3-5 2008 0.86 0.75 0.68 0.67 0.18 0.18
Massachusetts 3-5 2006 0.45 0.56 0.71 0.71 0.17 0.14
New York 3-5 2006 0.76 0.68 0.72 0.72 0.17 0.15
North Carolina 3-5 2006 0.63 0.84 0.59 0.67 0.20 0.18
Texas 3-5 2006 0.82 0.83 0.80 0.81 0.13 0.12

Grade 3-5 mean 0.70 0.73 0.68 0.71 0.17 0.16

Florida 6-8 2006 0.56 0.57 0.52 0.65 0.19 0.16
Illinois 6-8 2008 0.82 0.80 0.63 0.70 0.19 0.18
Massachusetts 6-8 2006 0.42 0.68 0.63 0.70 0.21 0.15
New York 6-8 2006 0.57 0.56 0.60 0.70 0.22 0.15
North Carolina 6-8 2006 0.60 0.82 0.54 0.66 0.19 0.19
Texas 6-8 2006 0.72 0.84 0.70 0.82 0.16 0.12

Grade 6-8 mean 0.61 0.71 0.61 0.70 0.19 0.16

Notes: This table shows summary statistics for all exam takers from our simulations. Panel A reports averages across
all 122 exams in our sample. Panels B–C report averages by state, exam year (pre-NCLB and NCLB era), and grade
group (3–5 and 6–8). Columns (A)–(B) show the proportion of exam takers who achieved proficiency, computed
separately for math and ELA exams. Columns (C)–(D) show the mean fraction of questions that exam takers
answered correctly. Columns (E)–(F) show the derivative of the probability of a correct answer, p′q(θi), averaged
across all questions and exam takers.
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Table 3. Test prep incentives for exam takers on proficiency margin (θi = θ)

(A) (B) (C) (D) (E) (F) (G)

Density Derivative Density
of ability of expected ×

distribution proficiency derivative Ratio

State Grades Year Math ELA Math ELA Math ELA (E)/(F)

Panel A. All exams (N = 122)

All exam mean 0.32 0.30 1.50 1.32 0.49 0.40 1.22

Panel B. Pre-NCLB exams (N = 50)

Florida 3-5 2003 0.33 0.32 1.36 1.35 0.46 0.44 1.05
Illinois 3,5 2000 0.40 0.37 1.55 1.46 0.62 0.54 1.15
Massachusetts 4 2000 0.38 0.27 1.51 1.35 0.57 0.37 1.55
New York 4 2002 0.45 0.42 2.42 1.47 1.09 0.62 1.76
North Carolina 3-5 2001 0.35 0.34 1.61 1.50 0.57 0.51 1.11
Texas 3-5 2001 0.15 0.14 1.31 1.18 0.19 0.16 1.18

Grade 3-5 mean 0.32 0.30 1.53 1.37 0.50 0.42 1.21

Florida 6-8 2003 0.34 0.33 1.23 1.31 0.41 0.43 0.96
Illinois 8 2000 0.35 0.45 1.51 1.38 0.53 0.62 0.86
Massachusetts 8 2000 0.36 0.36 1.73 1.47 0.63 0.53 1.17
New York 8 2002 0.48 0.48 2.67 1.64 1.29 0.79 1.63
North Carolina 6-8 2001 0.34 0.34 1.38 1.50 0.48 0.51 0.93
Texas 6-8 2001 0.14 0.14 1.47 1.22 0.21 0.17 1.22

Grade 6-8 mean 0.31 0.31 1.51 1.38 0.48 0.44 1.09

Panel C. NCLB era exams (N = 72)

Florida 3-5 2006 0.31 0.27 1.40 1.25 0.44 0.34 1.28
Illinois 3-5 2008 0.22 0.33 1.48 1.39 0.32 0.46 0.68
Massachusetts 3-5 2006 0.39 0.38 1.40 1.38 0.55 0.53 1.04
New York 3-5 2006 0.27 0.33 1.66 1.14 0.46 0.38 1.21
North Carolina 3-5 2006 0.39 0.25 1.33 1.20 0.53 0.30 1.77
Texas 3-5 2006 0.22 0.21 1.21 1.11 0.27 0.23 1.14

Grade 3-5 mean 0.30 0.30 1.41 1.25 0.43 0.37 1.14

Florida 6-8 2006 0.34 0.33 1.53 1.27 0.53 0.41 1.27
Illinois 6-8 2008 0.25 0.29 1.46 1.36 0.36 0.40 0.92
Massachusetts 6-8 2006 0.38 0.33 1.84 1.42 0.69 0.47 1.48
New York 6-8 2006 0.39 0.38 1.91 1.24 0.75 0.48 1.58
North Carolina 6-8 2006 0.40 0.28 1.34 1.30 0.53 0.37 1.44
Texas 6-8 2006 0.31 0.19 1.30 1.20 0.41 0.23 1.74

Grade 6-8 mean 0.34 0.30 1.56 1.30 0.55 0.39 1.39

Notes: This table shows statistics on test prep incentives for exam takers on proficiency margin (θi = θ). Panel A
reports averages across all 122 exams in our sample. Panels B–C report averages by state, exam year (pre-NCLB and
NCLB era), and grade group (3–5 and 6–8). We define the proficiency margin, θ, as the level of ability where the
likelihood of proficiency is 50 percent. Columns (A)–(B) show the density of the ability distribution at θ, computed
separately for math and ELA exams. Columns (C)–(D) show the derivative of expected proficiency dE[τ(Ri)|θi]/dθi

at θ. Column (E) shows the product of the terms in columns (A) and (C). Column (F) shows the product of the
terms in columns (B) and (D). Column (G) shows the ratio of columns (E) and (F).
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Table 4. Math/ELA differences in test prep incentives and exam design

(A) (B) (C) (D) (E) (F)

Math − ELA difference

ELA All Grades Grades Pre- NCLB
Dependent variable mean exams 3–5 6–8 NCLB era

Panel A. Statistics for all exam takers

Proficiency rate 0.70 −0.04∗∗ −0.00 −0.07∗∗∗ 0.00 −0.06∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02)

Proportion correct 0.70 −0.07∗∗∗ −0.04∗∗∗ −0.11∗∗∗ −0.09∗∗∗ −0.06∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Derivative of proportion correct 0.16 0.02∗∗∗ 0.02∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.03∗∗∗
(0.00) (0.00) (0.01) (0.00) (0.00)

Panel B. Statistics for exam takers on proficiency margin (θi = θ)

Density of ability distribution 0.30 0.02∗∗ 0.01 0.02∗∗ 0.01 0.02∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Derivative of expected proficiency 1.32 0.19∗∗∗ 0.16∗∗∗ 0.21∗∗∗ 0.14∗∗ 0.22∗∗∗
(0.04) (0.04) (0.06) (0.06) (0.04)

Density of ability distribution × 0.40 0.09∗∗∗ 0.07∗∗ 0.11∗∗∗ 0.06∗∗ 0.10∗∗∗
derivative of expected proficiency (0.02) (0.03) (0.03) (0.03) (0.02)

Panel C. Exam design parameters

Number of questions, Q 50.35 7.28∗∗∗ 7.12∗∗∗ 7.44∗∗∗ 10.00∗∗∗ 5.39∗∗∗
(1.50) (2.26) (1.99) (2.43) (1.85)

Question discrimination, aq 0.90 0.06∗∗∗ 0.01 0.11∗∗∗ −0.03 0.11∗∗∗
(0.02) (0.02) (0.03) (0.04) (0.01)

Question difficulty, bq −0.67 0.34∗∗∗ 0.14∗∗ 0.53∗∗∗ 0.33∗∗∗ 0.34∗∗∗
(0.04) (0.05) (0.04) (0.07) (0.05)

Question guessability, cq 0.16 −0.02∗∗∗ −0.03∗∗∗ −0.02∗ −0.04∗∗∗ −0.01
(0.01) (0.01) (0.01) (0.01) (0.01)

MSE between ability/question difficulty 1.30 −0.28∗∗∗ −0.32∗∗ −0.24 −0.19 −0.35∗∗∗
at prof. margin, E[(θ−bq)2] (0.09) (0.12) (0.15) (0.15) (0.12)

N (# exams) 61 122 62 60 50 72

Notes: This table shows results from a regression of exam characteristics on an indicator for math exams (relative to
ELA exams). The dependent variable for each regression is listed in the first column; these variables are defined as
in Tables 2–3 and Figure 2. Column (A) shows the mean of each dependent variable for the 61 ELA exams in our
sample. Column (B) displays the coefficient on an indicator for math exams in regressions that include all 122 exams
in our sample. Columns (C)–(F) show coefficients on the math indicator in subsamples that include only: grade 3–5
exams, grade 6–8 exams, pre-NCLB exams (2000–2003), and NCLB era exams (2006–2008).

All regressions include fixed effects for state × year × grade triplets. Parentheses contain robust standard errors.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5. Predictors of the derivative of expected proficiency for marginally-proficient students

Dependent variable:
Derivative of expected proficiency for marginally-
proficient students, i.e., dE[τ(Ri)|θi]/dθi at θi = θ

Covariate
(standardized to mean 0/SD 1) (A) (B) (C) (D) (E) (F)

Constant 1.41∗∗∗ 1.41∗∗∗ 1.44∗∗∗ 1.44∗∗∗ 1.41∗∗∗ 1.45∗∗∗
(0.02) (0.02) (0.03) (0.03) (0.02) (0.02)

MSE between ability/question difficulty −0.05∗ −0.07∗∗∗ −0.12∗∗∗
at prof. margin, E[(θ−bq)2] (0.02) (0.02) (0.02)

Number of questions, Q 0.13∗∗∗ 0.14∗∗∗ 0.11∗∗∗
(0.02) (0.02) (0.02)

Question discrimination, aq 0.12∗∗∗ 0.12∗∗∗
(0.04) (0.02)

Question guessability, cq −0.11∗∗∗ −0.18∗∗∗
(0.03) (0.02)

N (# exams) 122 122 92 92 122 92

Notes: This table shows results from regressions in which the dependent variable is the derivative of expected
proficiency for marginally-proficient students (defined as in columns C–D of Table 3). The covariates for each
regression are listed in the first column; these are the exam design features in Figure 2. We standardize each
covariate to be mean zero and SD one. The SDs for each characteristic are: MSE between ability/question difficulty
at prof. margin (0.63); number of questions (12); question discrimination (0.14); question guessability (0.05).

The sample for each regression includes the 122 exams in our main sample. Question discrimination (aq) and
guessability (cq) are not defined for exams that use the Rasch model (see Appendix Table A1). Parentheses contain
robust standard errors.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6. Math/ELA differences in test prep incentives
by bandwidth around proficiency margin

(A) (B) (C) (D) (E) (F)

Math − ELA difference by bandwidth around θ

ELA
mean at |θi−θ| |θi−θ| |θi−θ| |θi−θ|

Dependent variable θi = θ θi = θ < 0.2 < 0.4 < 0.6 < 0.8

Density of ability distribution 0.30 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗ 0.01∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Derivative of expected proficiency 1.32 0.19∗∗∗ 0.16∗∗∗ 0.07∗∗∗ 0.02∗∗∗ −0.00
(0.04) (0.03) (0.01) (0.01) (0.00)

Density of ability distribution × 0.40 0.09∗∗∗ 0.08∗∗∗ 0.04∗∗∗ 0.02∗∗ 0.01
derivative of expected proficiency (0.02) (0.02) (0.01) (0.01) (0.00)

N (# exams) 61 122 122 122 122 122

Expected proficiency at minimum θi 0.50 0.50 0.30 0.12 0.04 0.01
Expected proficiency at maximum θi 0.50 0.50 0.70 0.89 0.97 0.99

Notes: This table shows results from a regression of exam characteristics on an indicator for math exams (relative
to ELA exams). The dependent variable for each regression is listed in the first column; these variables are defined
as in Panel B of Table 4. Columns (A)–(B) show values for exam takers on the proficiency margin, i.e., those with
ability θi = θ. Column (A) shows the mean of each dependent variable in the 61 ELA exams in our sample. Column
(B) displays the coefficient on an indicator for math exams in regressions that include all 122 exams in our sample.
Columns (C)–(F) are analogous to column (B), but the values represent averages over test takers whose ability, θi,
is within a certain bandwidth around the proficiency margin, θ. These bandwidths are 0.2, 0.4, 0.6, and 0.8 units on
the θi scale, as listed in the column header. The bottom two rows show expected proficiency at the minimum and
maximum values of θi within each bandwidth.

All regressions include fixed effects for state × year × grade triplets. Parentheses contain robust standard errors.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 7. Regressions of math/ELA ratio of literature estimates on
math/ELA ratio of test prep incentives

(A) (B) (C) (D)

Dependent variable:
Math/ELA ratio of literature estimates

All Account- Charter Teacher
Covariate papers ability school VA

Panel A. Weighted by number of exams

Math/ELA ratio of test prep incentives 0.83∗∗∗ 2.33∗∗∗ 1.51∗∗∗ 0.32
(0.23) (0.27) (0.31) (0.27)

N (# exams) 63 16 23 24

Panel B. Weighted by number of literature estimates

Math/ELA ratio of test prep incentives 0.51∗ 2.16∗∗∗ 1.61∗∗∗ 0.08
(0.28) (0.44) (0.24) (0.24)

N (# literature estimates) 19 5 5 9

Dependent variable mean 1.45 1.43 1.57 1.38

Notes: This table shows the OLS relationship between the math/ELA ratios of literature estimates and test prep
incentives. The dependent variable for each regression is the math/ELA ratio of literature estimates, as in column
(H) of Table 1. We include the 19 literature estimates for which the authors’ data comes from a state in our sample
of exams. To reduce noise in the regressions, we winsorize the dependent variable by setting the maximum/minimum
literature estimates to the 90th/10th percentile values (i.e., 4.87 becomes 2, and 0.47 becomes 1.05). The only
covariate in each regression is the math/ELA ratio of the density of the ability distribution × the derivative of
expected proficiency (computed at the proficiency margin), as in column (G) of Table 3. This value averages over
the grades (3–8) and periods (pre-NCLB and NCLB era) that match the sample for each literature estimate.

Regressions in column (A) include all 19 matched literature estimates. Columns (B)–(D) estimate regressions
separately for the accountability, charter school, and teacher value added papers in this matched sample (see Table
1). Panel A presents results from regressions weighted by the number of matched exams. Panel B presents results
from regressions weighted by the number of literature estimates. Parentheses in both panels contain standard errors
clustered at the literature estimate level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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A. Appendix figures and tables

Table A1. Exam design parameters

(A) (B) (C) (D) (E) (F) (G) (H) (I)

MSE between
ability/difficulty Number of Question Question
on prof. margin questions discrimination guessability
E[(θ−bq)2] Q aq cq

State & exam grades Rasch? Math ELA Math ELA Math ELA Math ELA

Panel A. All exams (N = 122)

All exam mean 1.02 1.30 57.6 50.3 0.96 0.90 0.14 0.16

Panel B. Pre-NCLB exams (2000–2003, N = 50)

Florida 3-5 0.76 1.23 46.3 47.0 0.79 0.81 0.15 0.17
Illinois 3,5 X 0.64 0.92 75.0 61.0 . . . .
Massachusetts 4 1.24 4.12 54.0 68.0 0.84 0.83 0.10 0.10
New York 4 0.38 1.06 70.0 42.0 1.02 0.92 0.08 0.12
North Carolina 3-5 1.20 0.96 80.0 62.0 0.98 1.19 0.12 0.21
Texas 3-5 X 0.66 0.85 48.7 38.7 . . . .

Grade 3-5 mean 0.83 1.24 61.5 51.9 0.89 0.97 0.12 0.17

Florida 6-8 0.95 0.99 49.3 47.0 0.79 0.75 0.14 0.17
Illinois 8 X 1.05 0.68 80.0 55.0 . . . .
Massachusetts 8 1.64 2.67 54.0 68.0 1.04 0.85 0.11 0.07
New York 8 0.39 0.98 69.0 43.0 1.23 0.97 0.10 0.12
North Carolina 6-8 1.90 0.97 80.0 66.3 1.00 1.16 0.14 0.22
Texas 6-8 X 0.62 0.85 58.0 44.3 . . . .

Grade 6-8 mean 1.13 1.06 63.8 53.3 0.96 0.94 0.13 0.17

Panel C. NCLB era exams (2006–2008, N = 72)

Florida 3-5 0.77 1.23 46.3 47.0 0.86 0.81 0.16 0.20
Illinois 3-5 1.07 0.68 76.0 55.0 0.84 0.80 0.17 0.15
Massachusetts 3-5 1.91 2.63 49.3 56.0 0.85 0.82 0.09 0.09
New York 3-5 1.23 1.51 51.7 35.7 0.96 0.85 0.08 0.11
North Carolina 3-5 1.06 1.30 50.0 50.0 1.10 1.06 0.18 0.21
Texas 3-5 X 0.89 1.12 42.0 39.3 . . . .

Grade 3-5 mean 1.15 1.41 52.6 47.2 0.92 0.87 0.14 0.15

Florida 6-8 0.86 0.97 49.3 47.0 0.94 0.77 0.13 0.17
Illinois 6-8 1.17 0.68 75.7 55.0 0.90 0.81 0.20 0.16
Massachusetts 6-8 1.08 2.12 54.0 57.3 1.08 0.84 0.10 0.07
New York 6-8 0.86 2.07 54.7 41.3 1.07 0.91 0.10 0.12
North Carolina 6-8 1.21 1.34 53.3 56.0 1.19 1.06 0.20 0.22
Texas 6-8 X 0.60 1.23 48.0 46.0 . . . .

Grade 6-8 mean 0.96 1.40 55.8 50.4 1.04 0.88 0.14 0.15

Notes: This table shows the values of the exam design parameters that are plotted in Figure 2. The table has the
same structure as Tables 2–3. A checkmark in column (A) indicates that the exams were scored using the Rasch
model, which does not estimate question discrimination (aq) or guessability (cq). See the notes to Figure 2 for details.
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Table A2. Predictors of the derivative of expected proficiency for marginally-proficient students
with square terms

Dependent variable:
Derivative of expected proficiency for marginally-
proficient students, i.e., dE[τ(Ri)|θi]/dθi at θi = θ

Covariate
(standardized to mean 0/SD 1) (A) (B) (C) (D) (E) (F)

Constant 1.38∗∗∗ 1.46∗∗∗ 1.44∗∗∗ 1.41∗∗∗ 1.44∗∗∗ 1.44∗∗∗
(0.02) (0.03) (0.04) (0.03) (0.02) (0.04)

MSE between ability/question difficulty −0.11∗∗ −0.10∗∗ −0.18∗∗∗
at prof. margin, E[(θ−bq)2] (0.05) (0.04) (0.03)

MSE2 0.03∗ 0.02 0.02∗∗∗
(0.01) (0.01) (0.01)

Number of questions, Q 0.17∗∗∗ 0.17∗∗∗ 0.12∗∗∗
(0.02) (0.02) (0.02)

Number of questions2 −0.05∗∗∗ −0.05∗∗∗ −0.03∗
(0.01) (0.01) (0.02)

Question discrimination, aq 0.12∗∗∗ 0.11∗∗∗
(0.03) (0.02)

Question discrimination2 0.01 0.02
(0.04) (0.02)

Question guessability, cq −0.11∗∗∗ −0.18∗∗∗
(0.03) (0.02)

Question guessability2 0.04 0.01
(0.03) (0.02)

N (# exams) 122 122 92 92 122 92

Notes: This table shows results from regressions in which the dependent variable is the derivative of expected
proficiency for marginally-proficient students (defined as in columns C–D of Table 3). This table is similar to Table
5, except we include square terms for each exam design parameter.

The covariates for each regression are listed in the first column; these are the exam design features in Figure 2 and
their squares. We standardize each covariate to be mean zero and SD one. The SDs for each characteristic are: MSE
between ability/question difficulty at prof. margin (0.63); number of questions (12); question discrimination (0.14);
question guessability (0.05).

The sample for each regression includes the 122 exams in our main sample. Question discrimination (aq) and
guessability (cq) are not defined for exams that use the Rasch model (see Appendix Table A1). Parentheses contain
robust standard errors.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A3. Robustness checks for math/ELA differences in test prep incentives and exam design

(A) (B) (C) (D) (E)

Math − ELA difference

Full IRT p- Raw to θi ∼
Dependent variable sample param. values scale N(0, 1)

Panel A. Statistics for all exam takers

Proficiency rate −0.04∗∗ −0.05∗ −0.02 −0.03 −0.02
(0.02) (0.03) (0.02) (0.02) (0.02)

Proportion correct −0.07∗∗∗ −0.06∗∗∗ −0.07∗∗∗ −0.05∗∗∗ −0.06∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Derivative of proportion correct 0.02∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗
(0.00) (0.01) (0.01) (0.00) (0.00)

Panel B. Statistics for exam takers on proficiency margin (θi = θ)

Density of ability distribution 0.02∗∗ 0.01 0.03∗ 0.00 0.00
(0.01) (0.01) (0.02) (0.01) (0.01)

Derivative of expected proficiency 0.19∗∗∗ 0.30∗∗∗ 0.26∗∗∗ 0.28∗∗∗ 0.19∗∗∗
(0.04) (0.06) (0.09) (0.05) (0.04)

Density of ability distribution × 0.09∗∗∗ 0.12∗∗∗ 0.13∗∗ 0.10∗∗∗ 0.06∗∗∗
derivative of expected proficiency (0.02) (0.03) (0.05) (0.03) (0.02)

Panel C. Exam design parameters

Number of questions, Q 7.28∗∗∗ 3.82 9.93∗∗∗ 8.64∗∗∗ 7.28∗∗∗
(1.50) (2.80) (2.35) (2.11) (1.50)

Question discrimination, aq 0.06∗∗∗ 0.12∗∗∗ 0.18 0.12∗∗∗ 0.06∗∗∗
(0.02) (0.02) (0.08) (0.02) (0.02)

Question difficulty, bq 0.34∗∗∗ 0.31∗∗∗ 0.44∗∗∗ 0.34∗∗∗ 0.34∗∗∗
(0.04) (0.07) (0.07) (0.06) (0.04)

Question guessability, cq −0.02∗∗∗ −0.01∗ −0.03 0.00 −0.02∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

MSE between ability/question difficulty −0.28∗∗∗ −0.68∗∗∗ −0.37∗∗ −0.47∗∗∗ −0.28∗∗∗
at prof. margin, E[(θ−bq)2] (0.09) (0.17) (0.12) (0.14) (0.09)

N (# exams) 122 46 28 68 122

Notes: This table presents robustness checks for our main results. The dependent variable for each regression is listed
in the first column; these variables are defined as in Tables 2–3 and Figure 2. Column (A) displays the coefficient on
an indicator for math exams in regressions that include all 122 exams in our sample; this replicates our benchmark
results from Table 4. Columns (B)–(D) show coefficients on the math indicator in subsamples of exams for which
different types of data were available in the technical reports, as shown in Appendix Table C2. Column (B) includes
exams where we observe question-level IRT data. Column (C) includes exams where we observe question-level p-
values. Column (D) includes exams where we observe raw-to-scale conversion data. Column (E) displays the math
coefficients from regressions with all exams, but we weight test taker ability, θi, in our simulated data by the standard
normal distribution (rather than using weights that match the realized distribution of test scores). This shows how
our results would change if the exams were offered to the reference population rather than the population of test
takers in the actual year of administration.

All regressions include fixed effects for state × year × grade triplets. Parentheses contain robust standard errors.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A4. Regressions of math/ELA ratio of literature estimates on
math/ELA ratio of test prep incentives without winsorizing

(A) (B) (C) (D)

Dependent variable:
Math/ELA ratio of literature estimates

All Account- Charter Teacher
Covariate papers ability school VA

Panel A. Weighted by number of exams

Math/ELA ratio of test prep incentives 2.03∗ 2.33∗∗∗ 6.42 0.32
(1.12) (0.27) (3.22) (0.27)

N (# exams) 63 16 23 24

Panel B. Weighted by number of literature estimates

Math/ELA ratio of test prep incentives 1.36 2.16∗∗∗ 6.56 0.08
(0.96) (0.44) (3.08) (0.24)

N (# literature estimates) 19 5 5 9

Dependent variable mean 1.57 1.43 2.03 1.38

Notes: This table shows the OLS relationship between the math/ELA ratios of literature estimates and test prep
incentives. It is identical to Table 7, except we do not winsorize the dependent variable.

The dependent variable for each regression is the math/ELA ratio of literature estimates, as in column (H) of
Table 1. We include the 19 literature estimates for which the authors’ data comes from a state in our sample of
exams. The only covariate in each regression is the math/ELA ratio of the density of the ability distribution × the
derivative of expected proficiency (computed at the proficiency margin), as in column (G) of Table 3. This value
averages over the grades (3–8) and periods (pre-NCLB and NCLB era) that match the sample for each literature
estimate.

Regressions in column (A) include all 19 matched literature estimates. Columns (B)–(D) estimate regressions
separately for the accountability, charter school, and teacher value added papers in this matched sample (see Table
1). Panel A presents results from regressions weighted by the number of matched exams. Panel B presents results
from regressions weighted by the number of literature estimates. Parentheses in both panels contain standard errors
clustered at the literature estimate level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A5. Regressions of math/ELA ratio of literature estimates on
math/ELA ratio of test prep incentives dropping outliers

(A) (B) (C) (D)

Dependent variable:
Math/ELA ratio of literature estimates

All Account- Charter Teacher
Covariate papers ability school VA

Panel A. Weighted by number of exams

Math/ELA ratio of test prep incentives 0.65∗∗ 2.33∗∗∗ −1.54∗∗ 0.32
(0.23) (0.27) (0.35) (0.27)

N (# exams) 56 16 16 24

Panel B. Weighted by number of literature estimates

Math/ELA ratio of test prep incentives 0.33 2.16∗∗∗ −1.36 0.08
(0.25) (0.44) (0.64) (0.24)

N (# literature estimates) 17 5 3 9

Dependent variable mean 1.44 1.43 1.61 1.38

Notes: This table shows the OLS relationship between the math/ELA ratios of literature estimates and test prep
incentives. It is identical to Table 7, except we drop the smallest and largest math/ELA ratios of literature estimates:
Hoxby and Rockoff (2004) and Dobbie and Fryer Jr (2011) (grades 6–8).

The dependent variable for each regression is the math/ELA ratio of literature estimates, as in column (H) of
Table 1. We include the 17 literature estimates for which the authors’ data comes from a state in our sample of
exams, excluding Hoxby and Rockoff (2004) and Dobbie and Fryer Jr (2011) (grades 6–8). The only covariate in each
regression is the math/ELA ratio of the density of the ability distribution × the derivative of expected proficiency
(computed at the proficiency margin), as in column (G) of Table 3. This value averages over the grades (3–8) and
periods (pre-NCLB and NCLB era) that match the sample for each literature estimate.

Regressions in column (A) include all 17 matched literature estimates. Columns (B)–(D) estimate regressions
separately for the accountability, charter school, and teacher value added papers in this matched sample (see Table
1). Panel A presents results from regressions weighted by the number of matched exams. Panel B presents results
from regressions weighted by the number of literature estimates. Parentheses in both panels contain standard errors
clustered at the literature estimate level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A6. Sensitivity of main results to simulation error

(A) (B) (C) (D) (E)

Statistics from 10 replications

Main Largest Smallest Prop. w/ Prop. w/
Dependent variable/covariate estimate estimate estimate p < 0.05 p < 0.10

Panel A. Math/ELA differences in statistics for all exam takers

Proficiency rate −0.036∗∗ −0.037∗∗ −0.037∗∗ 1.000 1.000
(0.015) (0.016) (0.015)

Proportion correct −0.072∗∗∗ −0.072∗∗∗ −0.072∗∗∗ 1.000 1.000
(0.007) (0.007) (0.007)

Derivative of proportion correct 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 1.000 1.000
(0.003) (0.003) (0.003)

N (# exams) 122 122 122

Panel B. Math/ELA differences in statistics for exam takers on proficiency margin (θi = θ)

Density of ability distribution 0.018∗∗ 0.020∗∗ 0.017∗∗ 0.900 1.000
(0.009) (0.009) (0.009)

Derivative of expected proficiency 0.186∗∗∗ 0.212∗∗∗ 0.183∗∗∗ 1.000 1.000
(0.036) (0.043) (0.043)

Density of ability distribution × 0.087∗∗∗ 0.098∗∗∗ 0.087∗∗∗ 1.000 1.000
derivative of expected proficiency (0.019) (0.021) (0.019)

N (# exams) 122 122 122

Panel C. Regression for math/ELA ratio of literature estimates (weighted by # exams)

Math/ELA ratio of test prep incentives 0.834∗∗∗ 0.981∗∗∗ 0.679∗∗∗ 1.000 1.000
(0.228) (0.246) (0.205)

N (# exams) 63 63 63

Panel D. Regression for math/ELA ratio of literature estimates (weighted by # lit. estimates)

Math/ELA ratio of test prep incentives 0.509∗ 0.690∗∗ 0.368 0.300 0.500
(0.282) (0.265) (0.267)

N (# literature estimates) 19 19 19

Notes: This table examines the sensitivity of our main results to simulation error. In Panels A–B, column (A)
replicates our main estimates for the math/ELA difference in exam statistics (from column B of Table 4). In Panels
C–D, column (A) replicates our main estimates from regressing the math/ELA ratio of literature estimates on the
math/ELA ratio of test prep incentives (from column A of Table 7). All variables and regression specifications are
identical to those described in Tables 4 and 7.

To test the sensitivity of these results, we re-run our simulations 10 times following the same methodology described
in Section 4.1 and Appendix C.5. Columns (B)–(E) display results from these 10 replications. Column (B) shows
the largest coefficient (in magnitude) from these replications, and column (C) shows the smallest coefficient (in
magnitude). Column (D) shows the proportion of coefficients that have a p-value less than 0.05, and column (E)
shows the proportion with a p-value less than 0.10.

Parentheses in Panels A–B contain robust standard errors. Parentheses in Panels C–D contain standard errors
clustered at the literature estimate level.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A7. Math/ELA estimates in the class size literature

(A) (B) (C) (D) (E) (F) (G)

Main effects of
larger classes Ratio

Paper State/country Years Grades Math ELA (E)/(F)

Panel A. U.S. papers from pre-accountability years

McGiverin et al. (1989) Indiana 1985–86 2 −0.477 −0.461 1.03
Krueger (1999) Tennessee 1986–89 K–3 −1.960 −3.280 0.60
Hoxby (2000) Connecticut 1986–98 4,6 −0.098 −0.118 0.84
Akerhielm (1995) United States 1988 8 −0.020 −0.020 1.00

Average 0.87

Panel B. U.S. papers in years with accountability

Jepsen and Rivkin (2009) California 1991–02 2–4 −0.100 −0.060 1.67
Rivkin et al. (2005) Texas 1993–98 4–7 −0.005 −0.004 1.27
Molnar et al. (1999) Wisconsin 1997–98 1 −0.129 −0.119 1.09

Average 1.34

Panel C. International papers (low accountability)

Angrist and Lavy (1999) Israel 1991 4–5 −0.140 −0.204 0.69
Urquiola (2006) Bolivia 1996 3 −0.210 −0.180 1.17

Average 0.93

Average (all papers) 1.04

Notes: This table shows math and ELA estimates from research on the effects of class size on student achievement.
Panel A includes papers with U.S. samples in years prior to the existence of state accountability policies. Panel B
includes papers with U.S. samples in years after the introduction of state accountabiltiy policies. In categorizing U.S.
papers into Panel A or B, we follow Dee and Jacob (2011)’s classification of the year in which each state implemented
a consequential accountability policy (see their Table 1). Panel C includes papers with international samples; in these
settings, standardized tests were administered without significant accountability policies.

We include papers that we could find with samples in the 1990s or earlier. We include only papers with identifi-
cation strategies that are typically perceived as credible by researchers in the economics of education (e.g., random
assignment, regression discontinuity, difference in differences, or other instrumental variables). In addition, we include
only papers that present estimates on both math and ELA scores.

Column (A) lists the papers that meet these criteria. Columns (B)–(D) show the state/country, exam years (spring
of academic year), and grades for the sample in each paper. Columns (E)–(F) show math and ELA estimates from
the authors’ benchmark specification, and column (G) shows the ratio of columns (E) and (F). The units for these
estimates vary across papers (e.g., effect sizes, percentiles, and test score growth); in all cases, the math and ELA
effects are from the same specification and in the same units. If the authors present estimates for different grades or
exams, we report the average of these estimates. We report all estimates as negative numbers because each paper
finds that larger class sizes lead to lower test scores. Details on the sources and calculations are available from the
authors upon request.
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B. Theoretical appendix

B.1. Optimal test prep. This appendix presents a full derivation of our framework and
proposition from Section 3.

We consider a teacher with a class of students indexed by i. We assume each student’s
ability is given by

θi = αi + g(e∗)h(α∗ − αi).(B1)

The terms are defined as follows:

• αi = student i’s ability prior to any test preparation;
– For simplicity we assume αi is continuously distributed with density f(αi).

• e∗ = teacher effort;
• g(e∗) = effect of effort on skill accumulation;

– We assume g(0) = 0, g′(·) > 0, and g′′(·) < 0.
• α∗ = teacher’s target instruction level;
• h(α∗ − αi) = effect of the distance between α∗ and αi on skill accumulation;

– We assume h(·) is positive and decreasing as a function of |α∗ − αi|, and that
h(·) = 0 if |α∗ − αi| > h for some h > 0.

• θi student i’s ability after test preparation.

The exam consists of multiple questions indexed by q = 1, . . . , Q. A student’s ability
affects their exam performance through:

pq(θi) ≡ Pr[uiq = 1|θi],(B2)

where uiq is an indicator equal to one if student i correctly answers question q.
We consider test scores defined by whether or not a student meets a proficiency standard:

τ(Ri) = 1{Ri ≥ R}, where Ri =
Q∑
q=1

uiq,(B3)

where Ri is student i’s raw score (i.e., total number of correct answers), and R is the minimum
raw score required for proficiency.

The teacher’s utility is given by:

V (τ̄ , e∗) = ψτ̄ − c(e∗), where τ̄ = E[τ(Ri)].(B4)

τ̄ is the class proficiency rate, i.e., the proportion of students in the class who meet the
standard of proficiency. c(e∗) is the teacher’s cost of effort; we assume c(0) = 0, c′(·) > 0,
and c′′(·) > 0. The term ψ reflects the relative utility of proficiency and effort. This term
could represent the “stakes” of the exam for the teacher, or the utility benefits of test score
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gains per unit of effort. This term helps connect our framework to the literatures in Table
1 (see Appendix B.4).

The teacher chooses e∗ and α∗ to maximize expected utility. Each student has an expected
likelihood of achieving proficiency that depends on their post-prep skill, E[τ(Ri)|θi]. The
teacher’s expected utility is given by the mean expected proficiency across all students minus
the cost of effort. Formally, the teacher’s problem is:

max
e∗,α∗

ψ
∫
αi

E[τ(Ri)|θi]f(αi)dαi − c(e∗),(B5)

where the ability of each student, θi, depends on α∗ and e∗.
The optimal value of α∗ is characterized by:33∫

αi

dE[τ(Ri)|θi]
dθi

h′(α∗ − αi)f(αi)dαi = 0.(B6)

We have h′(·) ≥ 0 if αi ≥ α∗, and h′(·) ≤ 0 if αi ≤ α∗. Thus (B6) can be written as:∫
αi≥α∗

dE[τ(Ri)|θi]
dθi

h′(α∗ − αi)f(αi)dαi = −
∫

αi<α∗

dE[τ(Ri)|θi]
dθi

h′(α∗ − αi)f(αi)dαi.

This equation shows that the optimal value of α∗ balances the skill gains, h′(·), for students
with ability above the target level (αi ≥ α∗) with the skill losses, −h′(·), for students below
the target level (αi < α∗). These skill gains/losses are weighted by the number of students,
f(αi), and by the effect of an increase in the student’s skill on the likelihood of proficiency,
dE[τ(Ri)|θi]/dθi. In other words, the optimal value of α∗ depends on the distribution of αi’s
in the classroom and on the likelihood that an increase in skill, θi, will make the difference
in terms of achieving proficiency. The optimal α∗ will typically be close to the value of αi
for which E[τ(Ri)|αi] = 0.5, unless the class contains few students at this ability level.

The optimal value of e∗ is characterized by:
c′(e∗)
g′(e∗) = ψ

∫
αi

dE[τ(Ri)|θi]
dθi

h(α∗ − αi)f(αi)dαi.(B7)

All terms in this expression are positive. The lefthand side is increasing in e∗ since c(·) is
convex and g(·) is concave. The righthand side can be seen as a weighted average of the
effect of an increase in the student’s skill on the likelihood of proficiency, dE[τ(Ri)|θi]/dθi.
The weights are the total amount of skill accumulation for each ability level, αi, given the
teacher’s target instruction level, α∗. Total skill accumulation depends on the number of
students, f(αi), and the skill accumulation for each student, h(α∗ − αi). Proposition 1
follows from these observations:
33 We derive (B6) by taking the derivative of (B5) with respect to α∗ using the chain rule. We also remove
irrelevant terms; the solution does not depend on the cost of effort, g(e∗), or the exam stakes, ψ.
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Proposition 1. The teacher’s optimal level of effort, e∗, is increasing in:

• The number of students on the margin of expected proficiency; and
• The derivative of expected proficiency with respect to ability, dE[τ(Ri)|θi]/dθi, for
marginally-proficient students.

B.2. Exam design and proficiency returns to ability. Proposition 1 shows that teacher
effort depends on the derivative of expected proficiency with respect to ability for marginally-
proficient students. This term can be written as (see Appendix B.3 for the derivation):

dE[τ(Ri)|θi]
dθi

=
Q∑
q=1

p′q(θi)E
[
τ
(
R−qi + 1

)
− τ

(
R−qi

)∣∣∣∣θi].(B8)

Equation (B8) has two terms. The first term, p′q(θi), is the effect of an increase in θi on the
probability of a correct answer to question q. The second term, E

[
τ
(
R−qi + 1

)
− τ

(
R−qi

)∣∣∣∣θi]
is the expected proficiency return to question q, where R−qi denotes the raw score excluding
question q. This term represents the effect of a correct answer to question q on the probability
that the student achieves proficiency. The total effect of an increase in θi on the expected
proficiency rate is given by the sum (across questions) of the product of these two terms.

In the three-factor IRT model defined by equation (4), the p′q(θi) term is equal to

p′q(θi) = aq(1− cq)eaq(θi−bq)

(1 + eaq(θi−bq))2 .(B9)

Equation (B9) shows that, for test takers on the proficiency margin, dE[τ(Ri)|θi]/dθi is:

• Increasing in the discrimination parameter, aq;
• Decreasing in the distance between question difficulty and the exam taker’s ability,
|θi − bq|;
• Decreasing in the psuedo-guessing parameter, cq.

dE[τ(Ri)|θi]/dθi is also increasing in the total number of questions, Q, for marginally-
proficient students. To see this, suppose all questions are identical, so that equation (B8)
can be written as:

dE[τ(Ri)|θi]
dθi

= Qp′q(θi)E
[
τ
(
R−qi + 1

)
− τ

(
R−qi

)∣∣∣∣θi].(B10)

Equation (B10) is increasing in Q for exam takers right at the proficiency margin, for whom
the proficiency return to a correct answer, E

[
τ
(
R−qi +1

)
−τ

(
R−qi

)∣∣∣∣θi], is large. The intuition
is that an exam is more informative about ability when it has more questions, which will
more precisely measure increases in ability for marginally-proficient students.
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B.3. Derivation of expression (B8). The likelihood of proficiency for a student with
ability θi is:

E[τ(Ri)|θi] =
Q∑
r=0

Pr[Ri = r|θi]τ(r)

=
Q∑
r=0

{
Pr[Ri ≥ r|θi]− Pr[Ri ≥ r + 1|θi]

}
τ(r)

= τ(0) +
Q∑
r=1

Pr[Ri ≥ r|θi]
{
τ(r)− τ(r − 1)

}

= τ(0) +
Q∑
r=1

{ Q∑
s=r

Pr[Ri = s|θi]
}{

τ(r)− τ(r − 1)
}

The derivative of expected proficiency with respect to θi is:

dE[τ(Ri)|θi]
dθi

=
Q∑
r=1

{ Q∑
s=r

Q∑
q=1

p′q(θi)Pr[R
−q
i = s− 1|θi]− p′q(θi)Pr[R

−q
i = s|θi]

}{
τ(r)− τ(r − 1)

}

=
Q∑
r=1

{ Q∑
q=1

p′q(θi)Pr[R
−q
i = r − 1|θi]

}{
τ(r)− τ(r − 1)

}

=
Q∑
q=1

p′q(θi)
{ Q∑
r=1

Pr[R−qi = r − 1|θi]
{
τ(r)− τ(r − 1)

}}

≡
Q∑
q=1

p′q(θi)E
[
τ
(
R−qi + 1

)
− τ

(
R−qi

)∣∣∣∣θi]
B.4. Implications of exam design for estimates in literature. Equation (B7) shows
that teacher effort is increasing in ψ, which reflects the relative utility of proficiency and
effort. This term helps relate our framework to the three literatures in Table 1.

Panel A of Table 1 includes papers on accountability systems, which measure the effects
of an increase in the exam stakes. Suppose ψ reflects the stakes of the exam for the teacher.
Equation (B7) shows than an increase in ψ will lead to a larger change in teacher effort when
there are more students on the margin of proficiency, and when the derivative of expected
proficiency is larger for marginal students (as in Proposition 1).

Panel B of Table 1 includes papers that estimate the test score effects of attending a
charter school. Charter schools may be better than traditional public schools if they have
lower costs of effort, or if they are better at converting effort into test score gains. These
are equivalent to a higher value of ψ in equation (B7). By the same argument as above, the
effects of admission to a school with a higher ψ are increasing in the two factors highlighted
by Proposition 1.
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The same argument holds for variation in teacher value added, which is the focus of the
papers in Panel C of Table 1. The variation between good and bad teachers can be thought
of as variation in ψ. If teachers have incentives to engage in test prep, variation in ψ would
lead teachers to choose different levels of effort. This variation would be larger when exams
have more marginally-proficient students, and when the derivative of the proficiency rate is
larger for marginal students.
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C. Empirical appendix

This appendix provides details on our data and empirical simulations. We also provide
data and codes that execute our simulations and reproduce our results.

C.1. Data sources and sample. Our data come from the technical reports of grade 3–
8 math and ELA exams in the United States. Appendix Table C1 provides links to each
technical report. Panels A–B include reports for the states in our main sample. Panel C
includes other states from which we were able to find data for Figure 4.

Our main sample focuses on six states that are the setting for most of the research in Table
1: Florida, Illinois, Massachusetts, New York, North Carolina, and Texas. We collected data
on exams in two time periods: 2000–2003 (pre-NCLB) and 2006–2008 (NCLB era). In each
time period, we used the earliest exam for which we could find a technical report with all
the information necessary for our empirical simulations.

Our simulations rely on three types of information from these reports: 1) question param-
eters; 2) score scaling; and 3) score distributions. We discuss each of these in turn.

C.2. Question parameter data. Our first type of data is information on the question
parameters. Figure C1 provides an example of question parameter data for the Massachusetts
2006 grade 8 math exam. These data include the IRT parameters {aq, bq, cq} for each question
on the exam. Many exams (such as MA-2006) also have open response questions that are
worth multiple points. These are parameterized using a partial credit model, which can be
converted into an equivalent number of binary questions on the IRT scale.

Columns (A)–(C) in Table C2 show the question parameter data that were available for
each exam in our sample. Column (A) shows exams with IRT parameters for each question,
as in Figure C1. When these were not available, we used data on the p-values (proportion
correct) of each question, as indicated in column (B). We convert these p-values into IRT
parameters using the Rasch model.34 Lastly, column (C) shows exams for which data were
only available on the distribution of IRT parameters (e.g., the mean and SD of bq across
questions). In this case, we draw questions randomly from a normal distribution with a
mean and SD that matches the values from the technical report (see Section C.5 below).

C.3. Score scaling data. Our second type of data is information on the scaling of test
scores. In most U.S. states, scale scores are a function of raw scores (total correct answers),
so all students with the same raw score receive the same scale score. In this case, technical
reports often contain “raw-to-scale” conversions, which show the scale score assigned to each
potential raw score on the exam. Figure C2 provides an example of the raw-to-scale data
34 The Rasch model assumes aq = 1 and cq = 0 for all q. We can then solve for question difficulty, bq, for
the average test taker (θi = 0).
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we use for the Massachusetts 2006 grade 8 math exam. Column (D) in Table C2 shows the
exams with raw-to-scale conversions available in the technical reports.

For the exams indicated in column (E) of Table C2, we compute scores using a “theta-to-
scale” conversion. The technical reports of these exams include slope and intercept parame-
ters that allow for a linear transformation from expected ability (theta) units to scale score
units. In the NC-2001 and NC-2006 exams, scale scores are a function of raw scores, so we
compute the expected ability associated with each raw score, E[θi|Ri], in our simulations,
and then convert to scale scores using the slope and intercept parameters. In the IL-2000,
FL-2003, and FL-2006 exams, scale scores are a function of the full vector of exam responses,
{ui1, . . . , uiQ}.35 For these exams, we compute E[θi|ui1, . . . , uiQ] in our simulations, and use
this for the linear transformation to scale scores.

C.4. Score distribution data. Our third type of data is information on the distribution
of test scores. Figure C3 provides an example of the score distribution data for the Mas-
sachusetts 2006 grade 8 math exam. These data show the percentage of test takers who
earned each scale score during the test’s operation in that year. Column (F) in Table C2
shows exams with distribution data at the scale score level.

For the exams indicated in column (G) of Table C2, information was only available on the
percentage of test takers in different performance levels (e.g., Advanced, Proficient, Needs
Improvement, Failing). These performance levels are associated with different scale score
ranges. Importantly, every technical report includes the minimum scale score necessary to
achieve proficiency—a key metric in our analysis.

C.5. Empirical simulations. Our empirical simulation for each exam proceeds as follows:
(1) Create i = 1, . . . , 1000 test takers at each ability level θ ∈ {−5,−4.9, . . . , 0, . . . , 4.9, 5}.
(2) Use the question parameter data (Section C.2) to draw a random vector of exam

responses, {ui1, . . . , uiQ}, based on each test taker’s ability, θi, and the IRT model
(equation 4). Each uiq indicates whether test taker i answered question q correctly.

(3) Compute each test taker’s raw score, Ri = ∑Q
i=1 uiq.

(4) Compute each test taker’s scale score using the score scaling data (Section C.3).
(5) Re-weight the distribution of ability, θi, to match the observed score distribution

(Section C.4).36

35 In these exams, students with the same raw scores can receive different scale scores if they answered
different questions correctly.
36 Specifically, we begin with the prior that θi ∼ φ(θi), where φ(·) is the standard normal density. We
compute the fraction of test takers at each scale score s in the simulated data, and denote this by Pφs . Lastly,
we compute the density of the realized ability distribution, fs(θi) = φ(θi)Ps/Pφs for each score s, where Ps
is the realized score distribution (Section C.4). We collapse the data to the θ level to compute the density
of the ability distribution at each value of θ ∈ {−5,−4.9, . . . , 0, . . . , 4.9, 5}, i.e., f(θ) = E[fs(θi)|θi = θ].
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(6) Compute the statistics for the main results in Tables 2–3, which include:
• Proficiency rate and proportion correct over all exam takers;
• Level of ability, θ, at which Pr(Proficient) = 0.5 (“proficiency margin”);
• Density of ability distribution at proficiency margin;
• Derivative of expected proficiency at the proficiency margin (see equation (B8)).

We provide simulation codes for each exam in our main sample.
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Appendix B

THE MASSACHUSETTS COMPREHENSIVE ASSESSMENT SYSTEM Appendix B, Page 13
2006 MCAS Technical Report

Table B13: MCAS 2006 Mathematics, Grade 8
Item Type A B C D1 D2 D3 D4
226896 MC 1.379 0.343 0.138     
226908 MC 1.406 0.052 0.158     
226910 MC 0.976 -0.573 0.091     
226940 MC 1.487 -0.194 0.277     
226944 MC 1.017 -0.665 0.103     
226983 MC 1.507 -0.738 0.261     
226996 MC 0.761 -0.193 0.294     
228708 MC 0.739 0.279 0.421     
228779 MC 0.680 -0.312 0.201     
228816 MC 0.962 -0.241 0.140     
228847 MC 1.686 -0.558 0.259     
229496 MC 0.995 -0.064 0.199     
229502 MC 1.269 0.219 0.225     
229588 MC 1.043 -0.370 0.443     
229608 MC 1.403 -0.776 0.098     
229613 MC 1.091 -0.313 0.101     
229673 MC 1.439 0.636 0.172     
229680 MC 0.875 -0.585 0.164     
229702 MC 0.983 0.829 0.347     
229722 MC 1.486 0.839 0.071     
229724 MC 0.668 -1.735 0.095     
248137 MC 0.596 1.101 0.192     
248139 MC 1.097 0.018 0.302     
248140 MC 1.444 -0.294 0.309     
248142 MC 0.889 0.330 0.166     
248144 MC 1.110 0.462 0.292     
248155 MC 1.120 -1.065 0.098     
248162 MC 0.552 0.108 0.092     
248168 MC 0.577 -1.565 0.000     
228756 SA 1.139 0.374      
228958 SA 0.944 0.356      
229539 SA 0.955 -0.250      
229619 SA 0.962 -1.254      
229706 SA 0.973 0.147      
227751 OR 1.176 -0.321  1.473 0.517 -0.576 -1.414
228825 OR 0.869 -0.060  0.957 0.490 -0.302 -1.145
248147 OR 1.042 -0.712  1.077 0.227 -0.210 -1.094
248152 OR 1.333 0.086  1.304 0.393 -0.625 -1.072
248173 OR 1.064 -0.827  0.967 0.416 -0.181 -1.202

Figure C1. Massachusetts grade 8 math (2006) — Question parameter data

Source: 2006 Massachusetts (MCAS) Technical Report, Appendix B, p. 13. Available in October 2021 at:
http://www.mcasservicecenter.com/documents/MA/Technical%20Report/TechReport_2006.htm.
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Appendix C

THE MASSACHUSETTS COMPREHENSIVE ASSESSMENT SYSTEM Appendix C, Page 9
2006 MCAS Technical Report

Table C5: 2006 MCAS Grade 8 Raw-Score to Scaled-Score Conversions

Grade 8
Raw Score

English Language Arts
Scaled Score

Mathematics
Scaled Score

Science and Technology/
Engineering Scaled Score

0 200 200 200

1 200 200 200

2 202 202 202

3 202 202 202

4 204 202 202

5 204 204 204

6 206 204 204

7 206 206 204

8 208 208 206

9 208 210 206

10 210 210 208

11 210 212 210

12 212 212 210

13 212 212 212

14 214 214 212

15 214 214 212

16 216 214 214

17 216 216 214

18 218 216 214

19 218 216 216

20 218 216 216

21 220 218 216

22 220 218 216

23 222 218 218

24 224 218 218

25 226 218 218

26 226 220 218

27 228 220 220

28 230 220 220

29 232 220 220

30 234 222 222

31 236 224 224

32 238 226 226

33 240 228 228

34 240 230 230

35 242 232 232

36 242 234 232

37 244 236 234

38 246 238 236

39 246 240 238

40 248 240 240

41 250 242 242

(cont.)
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Table C5: 2006 MCAS Grade 8 Raw-Score to Scaled-Score Conversions

Grade 8
Raw Score

English Language Arts
Scaled Score

Mathematics
Scaled Score

Science and Technology/
Engineering Scaled Score

0 200 200 200

1 200 200 200

2 202 202 202

3 202 202 202

4 204 202 202

5 204 204 204

6 206 204 204

7 206 206 204

8 208 208 206

9 208 210 206

10 210 210 208

11 210 212 210

12 212 212 210

13 212 212 212

14 214 214 212

15 214 214 212

16 216 214 214

17 216 216 214

18 218 216 214

19 218 216 216

20 218 216 216

21 220 218 216

22 220 218 216

23 222 218 218

24 224 218 218

25 226 218 218

26 226 220 218

27 228 220 220

28 230 220 220

29 232 220 220

30 234 222 222

31 236 224 224

32 238 226 226

33 240 228 228

34 240 230 230

35 242 232 232

36 242 234 232

37 244 236 234

38 246 238 236

39 246 240 238

40 248 240 240

41 250 242 242

(cont.)

Appendix C

Appendix C, Page 10 THE MASSACHUSETTS COMPREHENSIVE ASSESSMENT SYSTEM
2006 MCAS Technical Report

Table C5: 2006 MCAS Grade 8 Raw-Score to Scaled-Score Conversions (cont.)

Grade 8
Raw Score

English Language Arts
Scaled Score

Mathematics
Scaled Score

Science and Technology/
Engineering Scaled Score

42 250 244 244
43 252 246 246
44 254 248 248
45 256 250 250
46 258 252 252
47 262 256 256
48 264 258 258
49 268 260 262
50 272 262 266
51 280 264 272
52 280 268 278
53 274 280
54 280 280
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Table C5: 2006 MCAS Grade 8 Raw-Score to Scaled-Score Conversions (cont.)

Grade 8
Raw Score

English Language Arts
Scaled Score

Mathematics
Scaled Score

Science and Technology/
Engineering Scaled Score

42 250 244 244
43 252 246 246
44 254 248 248
45 256 250 250
46 258 252 252
47 262 256 256
48 264 258 258
49 268 260 262
50 272 262 266
51 280 264 272
52 280 268 278
53 274 280
54 280 280

Figure C2. Massachusetts grade 8 math (2006) — Score scaling data

Source: 2006 Massachusetts (MCAS) Technical Report, Appendix C, pp. 9–10. Available in October 2021 at:
http://www.mcasservicecenter.com/documents/MA/Technical%20Report/TechReport_2006.htm.
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Table 5.3.11:
   2006 MCAS

Scaled-Score Distribution
     Grade 8 Mathematics

Score Number Percentage
Cumulative
Percentage

200 106 0.14 0.14
202 160 0.21 0.35
204 481 0.64 1.00
206 455 0.61 1.60
208 572 0.76 2.36
210 1406 1.87 4.24
212 2643 3.52 7.76
214 3128 4.17 11.93
216 4617 6.15 18.09
218 7261 9.68 27.76
220 6645 8.86 36.62
222 1780 2.37 38.99
224 1832 2.44 41.44
226 1897 2.53 43.97
228 1834 2.44 46.41
230 1858 2.48 48.89
232 1980 2.64 51.53
234 1944 2.59 54.12
236 1997 2.66 56.78
238 1976 2.63 59.41
240 3991 5.32 64.73
242 2053 2.74 67.47
244 2048 2.73 70.20
246 2096 2.79 72.99
248 2219 2.96 75.95
250 2166 2.89 78.84
252 2175 2.90 81.74
256 2212 2.95 84.69
258 2171 2.89 87.58
260 2258 3.01 90.59
262 2059 2.74 93.33
264 1855 2.47 95.81
268 1555 2.07 97.88
274 1064 1.42 99.30
280 527 0.70 100.00

Figure 5.3.U:
   2006 MCAS

Scaled-Score Distribution
     Grade 8 Mathematics
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Figure 5.3.V:
   2006 MCAS

Raw-Score Distribution
     Grade 8 Mathematics
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Figure C3. Massachusetts grade 8 math (2006) — Score distribution data

Source: 2006 Massachusetts (MCAS) Technical Report, p. 120. Available in October 2021 at:
http://www.mcasservicecenter.com/documents/MA/Technical%20Report/TechReport_2006.htm.

57

http://www.mcasservicecenter.com/documents/MA/Technical%20Report/TechReport_2006.htm


Table C1. Sources for technical reports

Archive
State Year .org? URL

Panel A. Pre-NCLB exams (2000–2003)

FL 2003 http://www.fldoe.org/accountability/assessments/k-12-student-assessment/
archive/fcat/researchers.stml

IL 2000 https://www.isbe.net/Pages/Illinois-Standards-Achievement-Test-(ISAT)-Archive.aspx
MA 2000 X http://www.doe.mass.edu/mcas/tech/?section=techreports
NC 2001 X http://www.ncpublicschools.org/accountability/testing/technicalnotes
NY 2002 X http://www.p12.nysed.gov/assessment/reports/archive3.html
TX 2001 X http://www.tea.state.tx.us/student.assessment/reporting/

Panel B. NCLB era exams (2006–2008)

FL 2006 http://www.fldoe.org/accountability/assessments/k-12-student-
assessment/archive/fcat/researchers.stml

IL 2008 https://www.isbe.net/Pages/Illinois-Standards-Achievement-Test-(ISAT)-Archive.aspx
MA 2006 http://www.mcasservicecenter.com/documents/MA/Technical%20Report/TechReport_2006.htm
NC 2006 X http://www.ncpublicschools.org/accountability/testing/technicalnotes
NY 2006 X http://www.p12.nysed.gov/assessment/reports/archive3.html
TX 2006 X http://www.tea.state.tx.us/student.assessment/reporting/

Panel C. Other states in Figure 4 (2006–2009)

AZ 2009 https://cms.azed.gov/home/GetDocumentFile?id=5852b7edaadebe0658611ca8
CA 2006 https://star.cde.ca.gov/startechnicalreports.asp
CO 2007 https://www.cde.state.co.us/assessment/coassess-additionalresources
LA 2006 https://www.louisianabelieves.com/resources/contact-us (email request)

MD 2006 X http://archives.marylandpublicschools.org/msde/divisions/planningresultstest/
2006+MSA+Reading+Technical+Report.htm

MO 2006 https://dese.mo.gov/college-career-readiness/assessment/assessment-technical-support-materials

NH 2006 https://www.ride.ri.gov/Portals/0/Uploads/Documents/Instruction-and-Assessment-World-Class-
Standards/Assessment/NECAP/TechnicalReports/2006-07-NECAP-Math-Reading-Writing-
Technical-Report-with-Appendices.pdf

NJ 2009 X https://www.nj.gov/education/assessment/es/njask_tech_report09.pdf
NM 2006 https://files.eric.ed.gov/fulltext/ED500392.pdf

OH 2006 http://education.ohio.gov/getattachment/Topics/Testing/Testing-Analysis-and-
Statistics/Statistical-Summaries-and-Item-Analysis-Reports/March-2006-Grades-3-8-OAT-
Statistical-Summary.pdf.aspx

PA 2007 X https://www.education.pa.gov/Documents/K-12/Assessment%20and%20Accountability/PSSA/
Technical%20Reports/2007%20Reading%20and%20Mathematics%20PSSA%20Technical%20Report.pdf

SD 2008 https://doe.sd.gov/assessment/documents/DS08TRepr.pdf

WA 2006 https://www.k12.wa.us/student-success/assessments/state-testing-overview/scores-and-
reports/testing-statistics-frequency-distribution

Notes: This table provides links to the technical reports that contain the data for this paper. Panels A–B include
exams for the states/years included in our main analysis. Panel C includes states with data that we use in Figure
4. Entries with a checkmark in the third column were accessed using the Wayback Machine at archive.org. NH
represents the New England Common Test Program (NECAP) exam, which was administered in New Hampshire,
Rhode Island, and Vermont.
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Table C2. Data on exam design

(A) (B) (C) (D) (E) (F) (G)

Score Score
Question parameters scaling data distribution data

IRT Scale Performance
IRT parameter Raw Theta score level

State Year Grades parameters p-values means/SDs to scale to scale distribution distribution

Panel A. Pre-NCLB exams (2000–2003)

FL 2003 3–8 X X X
IL 2000 3,5,8 X X X
MA 2000 4,8 X X X
NC 2001 3–8 X X X
NY 2002 4,8 X X X
TX 2001 3–8 X X X

Panel B. NCLB era exams (2006–2008)

FL 2006 3–8 X X X
IL 2008 3–8 X X X
MA 2006 3–8 X X X
NC 2006 3–8 X X X
NY 2006 3–8 X X X
TX 2006 3–8 X X X

Notes: This table shows the data we obtained from the technical reports for each of the six states in our main sample.
Panel A includes exams in the pre-NCLB era (2000–2003), and Panel B includes exams in the NCLB era (2006–2008).
Columns (A)–(C) show the data included in the technical report related to the question parameters (e.g., difficulty,
discrimination, and guessability). Columns (D)–(E) show the data that we use to convert from simulated raw scores
to scale scores. Columns (F)–(G) show the type of data available in each report on the realized distribution of test
scores. See Appendix Sections C.2–C.4 for details on each type of data.

59


	1. Introduction
	2. Literature estimates
	3. Framework
	3.1. Optimal test prep
	3.2. Exam design
	3.3. Incentives in math and ELA
	4. Data collection and analysis
	4.1. Data and methods
	4.2. Example
	4.3. Summary statistics for all test takers
	4.4. Main results
	4.5. Exam design components
	4.6. Sensitivity checks
	4.7. Why are math exams more discriminating at the proficiency margin?

	5. Relationship between test prep incentives and literature estimates
	5.1. Theoretical relationship
	5.2. Empirical relationship
	5.3. Generalizability to other states
	5.4. Math/ELA estimates in research on class size

	6. Conclusion
	References
	Figures and tables

	A. Appendix figures and tables
	B. Theoretical appendix
	B.1. Optimal test prep
	B.2. Exam design and proficiency returns to ability
	B.3. Derivation of expression (B8)
	B.4. Implications of exam design for estimates in literature

	C. Empirical appendix
	C.1. Data sources and sample
	C.2. Question parameter data
	C.3. Score scaling data
	C.4. Score distribution data
	C.5. Empirical simulations



